BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 30465274)

  • 1. Forecasting the spatiotemporal variability of soil CO
    Freitas LPS; Lopes MLM; Carvalho LB; Panosso AR; La Scala Júnior N; Freitas RLB; Minussi CR; Lotufo ADP
    Environ Monit Assess; 2018 Nov; 190(12):741. PubMed ID: 30465274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of long-term no-tillage systems with different succession cropping strategies on the variation of soil CO
    de Araújo Santos GA; Moitinho MR; de Oliveira Silva B; Xavier CV; Teixeira DB; Corá JE; Júnior NS
    Sci Total Environ; 2019 Oct; 686():413-424. PubMed ID: 31181527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of data mining techniques to classify soil CO2 emission induced by crop management in sugarcane field.
    Farhate CVV; Souza ZM; Oliveira SRM; Tavares RLM; Carvalho JLN
    PLoS One; 2018; 13(3):e0193537. PubMed ID: 29513765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Artificial neural networks and adaptive neuro-fuzzy inference systems for prediction of soil respiration in forested areas southern Brazil.
    Vicentini ME; da Silva PA; Canteral KFF; De Lucena WB; de Moraes MLT; Montanari R; Filho MCMT; Peruzzi NJ; La Scala N; De Souza Rolim G; Panosso AR
    Environ Monit Assess; 2023 Aug; 195(9):1074. PubMed ID: 37615714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crop rotation and succession in a no-tillage system: Implications for CO
    Xavier CV; Moitinho MR; De Bortoli Teixeira D; André de Araújo Santos G; de Andrade Barbosa M; Bastos Pereira Milori DM; Rigobelo E; Corá JE; La Scala Júnior N
    J Environ Manage; 2019 Sep; 245():8-15. PubMed ID: 31136938
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soil CO
    Moitinho MR; Teixeira DB; Bicalho EDS; Panosso AR; Ferraudo AS; Pereira GT; Tsai SM; Borges BMF; La Scala N
    Sci Rep; 2021 Apr; 11(1):8325. PubMed ID: 33859219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of sugarcane agriculture expansion over low-intensity cattle ranch pasture in Brazil on greenhouse gases.
    Bento CB; Filoso S; Pitombo LM; Cantarella H; Rossetto R; Martinelli LA; do Carmo JB
    J Environ Manage; 2018 Jan; 206():980-988. PubMed ID: 29223108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on soil carbon accumulation due to the management change of major Brazilian agricultural activities.
    La Scala N; De Figueiredo EB; Panosso AR
    Braz J Biol; 2012 Aug; 72(3 Suppl):775-85. PubMed ID: 23011303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implications of converting native forest areas to agricultural systems on the dynamics of CO
    Silva BO; Moitinho MR; Panosso AR; Oliveira DMDS; Montanari R; Moraes MLT; Milori DMBP; Bicalho EDS; La Scala N
    J Environ Manage; 2024 May; 358():120796. PubMed ID: 38636423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine learning for prediction of soil CO
    Canteral KFF; Vicentini ME; de Lucena WB; de Moraes MLT; Montanari R; Ferraudo AS; Peruzzi NJ; La Scala N; Panosso AR
    Environ Sci Pollut Res Int; 2023 May; 30(21):61052-61071. PubMed ID: 37046160
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling seasonal variations of long-term soil CO
    Yılmaz G; Bilgili AV
    Environ Monit Assess; 2018 Jul; 190(8):486. PubMed ID: 30039438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Forest and grassland cover types reduce net greenhouse gas emissions from agricultural soils.
    Baah-Acheamfour M; Carlyle CN; Lim SS; Bork EW; Chang SX
    Sci Total Environ; 2016 Nov; 571():1115-27. PubMed ID: 27450260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Soil carbon, nitrogen and phosphorus changes under sugarcane expansion in Brazil.
    Franco AL; Cherubin MR; Pavinato PS; Cerri CE; Six J; Davies CA; Cerri CC
    Sci Total Environ; 2015 May; 515-516():30-8. PubMed ID: 25688522
    [TBL] [Abstract][Full Text] [Related]  

  • 14. xCO2 temporal variability above Brazilian agroecosystems: A remote sensing approach.
    Morais Filho LFF; Meneses KC; Santos GAA; Bicalho EDS; Rolim GS; La Scala N
    J Environ Manage; 2021 Jun; 288():112433. PubMed ID: 33823434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting carbon dioxide emissions in the United States of America using machine learning algorithms.
    Chukwunonso BP; Al-Wesabi I; Shixiang L; AlSharabi K; Al-Shamma'a AA; Farh HMH; Saeed F; Kandil T; Al-Shaalan AM
    Environ Sci Pollut Res Int; 2024 May; 31(23):33685-33707. PubMed ID: 38691282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Liming in the sugarcane burnt system and the green harvest practice affect soil bacterial community in northeastern São Paulo, Brazil.
    Val-Moraes SP; de Macedo HS; Kishi LT; Pereira RM; Navarrete AA; Mendes LW; de Figueiredo EB; La Scala N; Tsai SM; de Macedo Lemos EG; Alves LM
    Antonie Van Leeuwenhoek; 2016 Dec; 109(12):1643-1654. PubMed ID: 27629424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crop rotation and sequence effects on temporal variation of CO
    Xavier CV; Moitinho MR; Teixeira DB; de Araújo Santos GA; Corá JE; La Scala N
    Sci Total Environ; 2020 Mar; 709():136107. PubMed ID: 31887519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of soil CO
    Kim D; Oren R; Clark JS; Palmroth S; Oishi AC; McCarthy HR; Maier CA; Johnsen K
    Glob Chang Biol; 2017 Sep; 23(9):3501-3512. PubMed ID: 28380283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implications of CO
    Rossi FS; La Scala N; Capristo-Silva GF; Della-Silva JL; Teodoro LPR; Almeida G; Tiago AV; Teodoro PE; Silva Junior CAD
    Environ Res; 2023 Jun; 227():115729. PubMed ID: 36948283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling carbon dioxide emissions from agricultural soils in Canada.
    Yadav D; Wang J
    Environ Pollut; 2017 Nov; 230():1040-1049. PubMed ID: 28764120
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.