BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30465531)

  • 1. [Precision genomic and translational medicine for acute myeloid leukemia].
    Yu XX; Chen AL; Li YY; Liu D; Wang QF
    Yi Chuan; 2018 Nov; 40(11):988-997. PubMed ID: 30465531
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SETD2-mediated crosstalk between H3K36me3 and H3K79me2 in MLL-rearranged leukemia.
    Bu J; Chen A; Yan X; He F; Dong Y; Zhou Y; He J; Zhan D; Lin P; Hayashi Y; Sun Y; Zhang Y; Xiao Z; Grimes HL; Wang QF; Huang G
    Leukemia; 2018 Apr; 32(4):890-899. PubMed ID: 29249820
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Essential role of PU.1 in maintenance of mixed lineage leukemia-associated leukemic stem cells.
    Aikawa Y; Yamagata K; Katsumoto T; Shima Y; Shino M; Stanley ER; Cleary ML; Akashi K; Tenen DG; Kitabayashi I
    Cancer Sci; 2015 Mar; 106(3):227-36. PubMed ID: 25529853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emerging therapeutic targets in human acute myeloid leukemia (part 2) - bromodomain inhibition should be considered as a possible strategy for various patient subsets.
    Reikvam H; Hoang TT; Bruserud Ø
    Expert Rev Hematol; 2015 Jun; 8(3):315-27. PubMed ID: 25901742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New strategies for relapsed acute myeloid leukemia: fertile ground for translational research.
    Dinner SN; Giles FJ; Altman JK
    Curr Opin Hematol; 2014 Mar; 21(2):79-86. PubMed ID: 24419335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of a Non-Nucleoside SETD2 Methyltransferase Inhibitor against Acute Myeloid Leukemia.
    Bajusz D; Bognár Z; Ebner J; Grebien F; Keserű GM
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576219
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Targeted therapy of acute myeloid leukemia.
    Carneiro BA; Altman JK; Kaplan JB; Ossenkoppele G; Swords R; Platanias LC; Giles FJ
    Expert Rev Anticancer Ther; 2015 Apr; 15(4):399-413. PubMed ID: 25623136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The heterogeneity of pediatric MLL-rearranged acute myeloid leukemia.
    Balgobind BV; Zwaan CM; Pieters R; Van den Heuvel-Eibrink MM
    Leukemia; 2011 Aug; 25(8):1239-48. PubMed ID: 21566656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential regulation of the c-Myc/Lin28 axis discriminates subclasses of rearranged MLL leukemia.
    Chen L; Sun Y; Wang J; Jiang H; Muntean AG
    Oncotarget; 2016 May; 7(18):25208-23. PubMed ID: 27007052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recent advances in the understanding and treatment of acute myeloid leukemia.
    Watts J; Nimer S
    F1000Res; 2018; 7():. PubMed ID: 30135719
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epigenetic deregulation in myeloid malignancies.
    Meldi KM; Figueroa ME
    Transl Res; 2015 Jan; 165(1):102-14. PubMed ID: 24813528
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SMYD2 lysine methyltransferase regulates leukemia cell growth and regeneration after genotoxic stress.
    Zipin-Roitman A; Aqaqe N; Yassin M; Biechonski S; Amar M; van Delft MF; Gan OI; McDermott SP; Buzina A; Ketela T; Shlush L; Xie S; Voisin V; Moffat J; Minden MD; Dick JE; Milyavsky M
    Oncotarget; 2017 Mar; 8(10):16712-16727. PubMed ID: 28187429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Epigenetic regulators and their impact on therapy in acute myeloid leukemia.
    Pastore F; Levine RL
    Haematologica; 2016 Mar; 101(3):269-78. PubMed ID: 26928248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Key roles of histone methyltransferase and demethylase in leukemogenesis.
    Yoshimi A; Kurokawa M
    J Cell Biochem; 2011 Feb; 112(2):415-24. PubMed ID: 21268062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of Gpr125 in the myeloid sarcoma formation induced by cooperating MLL/AF10(OM-LZ) and oncogenic KRAS in a mouse bone marrow transplantation model.
    Fu JF; Yen TH; Chen Y; Huang YJ; Hsu CL; Liang DC; Shih LY
    Int J Cancer; 2013 Oct; 133(8):1792-802. PubMed ID: 23564351
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insights from clinical studies into the role of the MLL gene in infant and childhood leukemia.
    Chowdhury T; Brady HJ
    Blood Cells Mol Dis; 2008; 40(2):192-9. PubMed ID: 17905612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combinatorial haplo-deficient tumor suppression in 7q-deficient myelodysplastic syndrome and acute myeloid leukemia.
    Will B; Steidl U
    Cancer Cell; 2014 May; 25(5):555-7. PubMed ID: 24823633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lost in translation? Ten years of development of histone deacetylase inhibitors in acute myeloid leukemia and myelodysplastic syndromes.
    Stahl M; Gore SD; Vey N; Prebet T
    Expert Opin Investig Drugs; 2016; 25(3):307-17. PubMed ID: 26807602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-cell genomics in AML: extending the frontiers of AML research.
    Ediriwickrema A; Gentles AJ; Majeti R
    Blood; 2023 Jan; 141(4):345-355. PubMed ID: 35926108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Meis1 is critical to the maintenance of human acute myeloid leukemia cells independent of MLL rearrangements.
    Liu J; Qin YZ; Yang S; Wang Y; Chang YJ; Zhao T; Jiang Q; Huang XJ
    Ann Hematol; 2017 Apr; 96(4):567-574. PubMed ID: 28054140
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.