These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30465989)

  • 1. Real-time prediction of rain-impacted sewage flow for on-line control of chemical dosing in sewers.
    Li J; Sharma K; Liu Y; Jiang G; Yuan Z
    Water Res; 2019 Feb; 149():311-321. PubMed ID: 30465989
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Event-driven model predictive control of sewage pumping stations for sulfide mitigation in sewer networks.
    Liu Y; Ganigué R; Sharma K; Yuan Z
    Water Res; 2016 Jul; 98():376-83. PubMed ID: 27124127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved sulfide mitigation in sewers through on-line control of ferrous salt dosing.
    Ganigué R; Jiang G; Liu Y; Sharma K; Wang YC; Gonzalez J; Nguyen T; Yuan Z
    Water Res; 2018 May; 135():302-310. PubMed ID: 29477793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dosing free nitrous acid for sulfide control in sewers: results of field trials in Australia.
    Jiang G; Keating A; Corrie S; O'halloran K; Nguyen L; Yuan Z
    Water Res; 2013 Sep; 47(13):4331-9. PubMed ID: 23764584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling sulfide production in full flow concrete sewers based on the HRT variation of sewerage.
    Wang J; Xu X; Liu S; Shao Y; Zhang J; Wang J; Li Q; He Y; Wang Y; Sun W; Luo F; Qi W; Liu G; Qi L; Wang H
    Water Sci Technol; 2021 May; 83(9):2063-2074. PubMed ID: 33989176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of fluctuations in gaseous H2S concentrations on sulfide uptake by sewer concrete: The effect of high H2S loads.
    Sun X; Jiang G; Bond PL; Keller J
    Water Res; 2015 Sep; 81():84-91. PubMed ID: 26043374
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling chemical dosing for sulfide mitigation in sewer networks using a hybrid automata control strategy.
    Liu Y; Ganigué R; Sharma K; Yuan Z
    Water Sci Technol; 2013; 68(12):2584-90. PubMed ID: 24355844
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Systematic evaluation of a dynamic sewer process model for prediction of odor formation and mitigation in large-scale pressurized sewers in Hong Kong.
    Liang ZS; Zhang L; Wu D; Chen GH; Jiang F
    Water Res; 2019 May; 154():94-103. PubMed ID: 30776618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The rapid chemically induced corrosion of concrete sewers at high H
    Li X; O'Moore L; Song Y; Bond PL; Yuan Z; Wilkie S; Hanzic L; Jiang G
    Water Res; 2019 Oct; 162():95-104. PubMed ID: 31255785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical dosing for sulfide control in Australia: An industry survey.
    Ganigue R; Gutierrez O; Rootsey R; Yuan Z
    Water Res; 2011 Dec; 45(19):6564-74. PubMed ID: 22018528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different ferric dosing strategies could result in different control mechanisms of sulfide and methane production in sediments of gravity sewers.
    Cao J; Zhang L; Hong J; Sun J; Jiang F
    Water Res; 2019 Nov; 164():114914. PubMed ID: 31400595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control sulfide and methane production in sewers based on free ammonia inactivation.
    Zuo Z; Song Y; Ren D; Li H; Gao Y; Yuan Z; Huang X; Zheng M; Liu Y
    Environ Int; 2020 Oct; 143():105928. PubMed ID: 32673907
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Swift hydraulic models for real-time control applications in sewer networks.
    Li J; Sharma K; Li W; Yuan Z
    Water Res; 2022 Apr; 213():118141. PubMed ID: 35149366
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental and modelling evaluations of sulfide formation in a mega-sized deep tunnel sewer system and implications for sewer management.
    Liang ZS; Sun J; Chau HK; Leong EI; Wu D; Chen GH; Jiang F
    Environ Int; 2019 Oct; 131():105011. PubMed ID: 31374444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of reduced water consumption on sulfide and methane production in rising main sewers.
    Sun J; Hu S; Sharma KR; Bustamante H; Yuan Z
    J Environ Manage; 2015 May; 154():307-15. PubMed ID: 25748598
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing sulfide mitigation via the sustainable supply of oxygen from air-nanobubbles in gravity sewers.
    Zhang Z; Chang N; Wang S; Lu J; Li K; Zheng C
    Sci Total Environ; 2022 Feb; 808():152203. PubMed ID: 34890666
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting concrete corrosion of sewers using artificial neural network.
    Jiang G; Keller J; Bond PL; Yuan Z
    Water Res; 2016 Apr; 92():52-60. PubMed ID: 26841228
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical oxidation of iron and alkalinity generation for efficient sulfide control in sewers.
    Lin HW; Kustermans C; Vaiopoulou E; Prévoteau A; Rabaey K; Yuan Z; Pikaar I
    Water Res; 2017 Jul; 118():114-120. PubMed ID: 28419895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid dynamic quantification of sulfide generation flux in spatially heterogeneous sediments of gravity sewers.
    Zuo Z; Ren D; Qiao L; Li H; Huang X; Liu Y
    Water Res; 2021 Sep; 203():117494. PubMed ID: 34412021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Full-scale investigation of in-situ iron and alkalinity generation for efficient sulfide control.
    Pikaar I; Flugen M; Lin HW; Salehin S; Li J; Donose BC; Dennis PG; Bethke L; Johnson I; Rabaey K; Yuan Z
    Water Res; 2019 Dec; 167():115032. PubMed ID: 31546029
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.