These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 30466063)
1. A Proteomics Approach to Profiling the Temporal Translational Response to Stress and Growth. Rothenberg DA; Taliaferro JM; Huber SM; Begley TJ; Dedon PC; White FM iScience; 2018 Nov; 9():367-381. PubMed ID: 30466063 [TBL] [Abstract][Full Text] [Related]
2. Quantitative chemical proteomics profiling of de novo protein synthesis during starvation-mediated autophagy. Wang J; Zhang J; Lee YM; Koh PL; Ng S; Bao F; Lin Q; Shen HM Autophagy; 2016 Oct; 12(10):1931-1944. PubMed ID: 27463841 [TBL] [Abstract][Full Text] [Related]
3. Time-Resolved Proteomics Extends Ribosome Profiling-Based Measurements of Protein Synthesis Dynamics. Liu TY; Huang HH; Wheeler D; Xu Y; Wells JA; Song YS; Wiita AP Cell Syst; 2017 Jun; 4(6):636-644.e9. PubMed ID: 28578850 [TBL] [Abstract][Full Text] [Related]
4. Proteomic Profiling of De Novo Protein Synthesis in Starvation-Induced Autophagy Using Bioorthogonal Noncanonical Amino Acid Tagging. Zhang J; Wang J; Lee YM; Lim TK; Lin Q; Shen HM Methods Enzymol; 2017; 588():41-59. PubMed ID: 28237112 [TBL] [Abstract][Full Text] [Related]
5. Bioorthogonal Noncanonical Amino Acid Tagging (BONCAT) Enables Time-Resolved Analysis of Protein Synthesis in Native Plant Tissue. Glenn WS; Stone SE; Ho SH; Sweredoski MJ; Moradian A; Hess S; Bailey-Serres J; Tirrell DA Plant Physiol; 2017 Mar; 173(3):1543-1553. PubMed ID: 28104718 [TBL] [Abstract][Full Text] [Related]
7. Metabolic Implications of Using BioOrthogonal Non-Canonical Amino Acid Tagging (BONCAT) for Tracking Protein Synthesis. Steward KF; Eilers B; Tripet B; Fuchs A; Dorle M; Rawle R; Soriano B; Balasubramanian N; Copié V; Bothner B; Hatzenpichler R Front Microbiol; 2020; 11():197. PubMed ID: 32117186 [TBL] [Abstract][Full Text] [Related]
8. Identification and quantification of newly synthesized proteins translationally regulated by YB-1 using a novel Click-SILAC approach. Somasekharan SP; Stoynov N; Rotblat B; Leprivier G; Galpin JD; Ahern CA; Foster LJ; Sorensen PH J Proteomics; 2012 Dec; 77():e1-10. PubMed ID: 22967496 [TBL] [Abstract][Full Text] [Related]
9. Proteomic Profiling of Franco M; D'haeseleer PM; Branda SS; Liou MJ; Haider Y; Segelke BW; El-Etr SH Front Cell Infect Microbiol; 2018; 8():370. PubMed ID: 30406044 [No Abstract] [Full Text] [Related]
10. PUNCH-P for global translatome profiling: Methodology, insights and comparison to other techniques. Aviner R; Geiger T; Elroy-Stein O Translation (Austin); 2013; 1(2):e27516. PubMed ID: 26824027 [TBL] [Abstract][Full Text] [Related]
11. Translational and transcriptional responses in human primary hepatocytes under hypoxia. Hettiarachchi GK; Katneni UK; Hunt RC; Kames JM; Athey JC; Bar H; Sauna ZE; McGill JR; Ibla JC; Kimchi-Sarfaty C Am J Physiol Gastrointest Liver Physiol; 2019 Jun; 316(6):G720-G734. PubMed ID: 30920299 [TBL] [Abstract][Full Text] [Related]
12. Exploring ribosome composition and newly synthesized proteins through proteomics and potential biomedical applications. Stastna M; Gottlieb RA; Van Eyk JE Expert Rev Proteomics; 2017 Jun; 14(6):529-543. PubMed ID: 28532181 [TBL] [Abstract][Full Text] [Related]
13. Non-canonical amino acid labeling in vivo to visualize and affinity purify newly synthesized proteins in larval zebrafish. Hinz FI; Dieterich DC; Tirrell DA; Schuman EM ACS Chem Neurosci; 2012 Jan; 3(1):40-49. PubMed ID: 22347535 [TBL] [Abstract][Full Text] [Related]
14. Nascent Proteome Remodeling following Homeostatic Scaling at Hippocampal Synapses. Schanzenbächer CT; Sambandan S; Langer JD; Schuman EM Neuron; 2016 Oct; 92(2):358-371. PubMed ID: 27764671 [TBL] [Abstract][Full Text] [Related]
15. Selective Proteomic Analysis of Antibiotic-Tolerant Cellular Subpopulations in Babin BM; Atangcho L; van Eldijk MB; Sweredoski MJ; Moradian A; Hess S; Tolker-Nielsen T; Newman DK; Tirrell DA mBio; 2017 Oct; 8(5):. PubMed ID: 29066549 [TBL] [Abstract][Full Text] [Related]
16. Labeling, detection and identification of newly synthesized proteomes with bioorthogonal non-canonical amino-acid tagging. Dieterich DC; Lee JJ; Link AJ; Graumann J; Tirrell DA; Schuman EM Nat Protoc; 2007; 2(3):532-40. PubMed ID: 17406607 [TBL] [Abstract][Full Text] [Related]
17. Dynamics of Non-Canonical Amino Acid-Labeled Intra- and Extracellular Proteins in the Developing Mouse. Saleh AM; Jacobson KR; Kinzer-Ursem TL; Calve S Cell Mol Bioeng; 2019 Oct; 12(5):495-509. PubMed ID: 31719929 [TBL] [Abstract][Full Text] [Related]
18. An Adaptive Pipeline To Maximize Isobaric Tagging Data in Large-Scale MS-Based Proteomics. Corthésy J; Theofilatos K; Mavroudi S; Macron C; Cominetti O; Remlawi M; Ferraro F; Núñez Galindo A; Kussmann M; Likothanassis S; Dayon L J Proteome Res; 2018 Jun; 17(6):2165-2173. PubMed ID: 29695160 [TBL] [Abstract][Full Text] [Related]
19. An Integrative Biology Approach to Quantify the Biodistribution of Azidohomoalanine Saleh AM; VanDyk TG; Jacobson KR; Khan SA; Calve S; Kinzer-Ursem TL Cell Mol Bioeng; 2023 Apr; 16(2):99-115. PubMed ID: 37096070 [TBL] [Abstract][Full Text] [Related]
20. Flow Cytometric Analysis of Bacterial Protein Synthesis: Monitoring Vitality After Water Treatment. Lindivat M; Bratbak G; Larsen A; Hess-Erga OK; Hoell IA Front Microbiol; 2021; 12():772651. PubMed ID: 34956134 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]