These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Cloning and characterization of a novel Athspr promoter specifically active in vascular tissue. Zhang L; Yang T; Li X; Hao H; Xu S; Cheng W; Sun Y; Wang C Plant Physiol Biochem; 2014 May; 78():88-96. PubMed ID: 24675528 [TBL] [Abstract][Full Text] [Related]
9. Dof5.6/HCA2, a Dof transcription factor gene, regulates interfascicular cambium formation and vascular tissue development in Arabidopsis. Guo Y; Qin G; Gu H; Qu LJ Plant Cell; 2009 Nov; 21(11):3518-34. PubMed ID: 19915089 [TBL] [Abstract][Full Text] [Related]
10. Arabidopsis VASCULAR-RELATED UNKNOWN PROTEIN1 regulates xylem development and growth by a conserved mechanism that modulates hormone signaling. Grienenberger E; Douglas CJ Plant Physiol; 2014 Apr; 164(4):1991-2010. PubMed ID: 24567189 [TBL] [Abstract][Full Text] [Related]
11. WOX14 promotes bioactive gibberellin synthesis and vascular cell differentiation in Arabidopsis. Denis E; Kbiri N; Mary V; Claisse G; Conde E Silva N; Kreis M; Deveaux Y Plant J; 2017 May; 90(3):560-572. PubMed ID: 28218997 [TBL] [Abstract][Full Text] [Related]
12. Control of cambium initiation and activity in Arabidopsis by the transcriptional regulator AHL15. Rahimi A; Karami O; Lestari AD; de Werk T; Amakorová P; Shi D; Novák O; Greb T; Offringa R Curr Biol; 2022 Apr; 32(8):1764-1775.e3. PubMed ID: 35294866 [TBL] [Abstract][Full Text] [Related]
13. Gall formation in clubroot-infected Arabidopsis results from an increase in existing meristematic activities of the host but is not essential for the completion of the pathogen life cycle. Malinowski R; Smith JA; Fleming AJ; Scholes JD; Rolfe SA Plant J; 2012 Jul; 71(2):226-38. PubMed ID: 22394393 [TBL] [Abstract][Full Text] [Related]
14. Bifacial cambium stem cells generate xylem and phloem during radial plant growth. Shi D; Lebovka I; López-Salmerón V; Sanchez P; Greb T Development; 2019 Jan; 146(1):. PubMed ID: 30626594 [TBL] [Abstract][Full Text] [Related]
15. Organ-specific genetic interactions between paralogues of the Wang N; Bagdassarian KS; Doherty RE; Kroon JT; Connor KA; Wang XY; Wang W; Jermyn IH; Turner SR; Etchells JP Development; 2019 May; 146(10):. PubMed ID: 31043420 [TBL] [Abstract][Full Text] [Related]
16. Sucrose Signaling Contributes to the Maintenance of Vascular Cambium by Inhibiting Cell Differentiation. Narutaki A; Kahar P; Shimadzu S; Maeda S; Furuya T; Ishizaki K; Fukaki H; Ogino C; Kondo Y Plant Cell Physiol; 2023 Dec; 64(12):1511-1522. PubMed ID: 37130085 [TBL] [Abstract][Full Text] [Related]
17. CLE peptides in vascular development. Qiang Y; Wu J; Han H; Wang G J Integr Plant Biol; 2013 Apr; 55(4):389-94. PubMed ID: 23473393 [TBL] [Abstract][Full Text] [Related]
18. SUPPRESSOR OF MAX2 1-LIKE 5 promotes secondary phloem formation during radial stem growth. Wallner ES; Tonn N; Shi D; Jouannet V; Greb T Plant J; 2020 Jun; 102(5):903-915. PubMed ID: 31910293 [TBL] [Abstract][Full Text] [Related]
19. Plant vascular cell division is maintained by an interaction between PXY and ethylene signalling. Etchells JP; Provost CM; Turner SR PLoS Genet; 2012; 8(11):e1002997. PubMed ID: 23166504 [TBL] [Abstract][Full Text] [Related]
20. Characterization of transcriptome remodeling during cambium formation identifies MOL1 and RUL1 as opposing regulators of secondary growth. Agusti J; Lichtenberger R; Schwarz M; Nehlin L; Greb T PLoS Genet; 2011 Feb; 7(2):e1001312. PubMed ID: 21379334 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]