These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 3046708)

  • 1. Central organization of wave localization in the clawed frog, Xenopus laevis. I. Involvement and bilateral organization of the midbrain.
    Elepfandt A
    Brain Behav Evol; 1988; 31(6):349-57. PubMed ID: 3046708
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Central organization of wave localization in the clawed frog, Xenopus laevis. II. Midbrain topology for wave directions.
    Elepfandt A
    Brain Behav Evol; 1988; 31(6):358-68. PubMed ID: 3046709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural responses to water surface waves in the midbrain of the aquatic predator Xenopus laevis laevis.
    Behrend O; Branoner F; Zhivkov Z; Ziehm U
    Eur J Neurosci; 2006 Feb; 23(3):729-44. PubMed ID: 16487154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lateral Line Scene Analysis in the Purely Aquatic Frog Xenopus laevis Daudin (Pipidae).
    Elepfandt A; Lebrecht S; Schroedter K; Brudermanns B; Hillig R; Schuberth C; Fliess A
    Brain Behav Evol; 2016; 87(2):117-27. PubMed ID: 27172931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Auditory evoked potentials from medulla and midbrain in the clawed frog, Xenopus laevis laevis.
    Bibikov NG; Elepfandt A
    Hear Res; 2005 Jun; 204(1-2):29-36. PubMed ID: 15925189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spinal ascending pathways in amphibians: cells of origin and main targets.
    Muñoz A; Muñoz M; González A; ten Donkelaar HJ
    J Comp Neurol; 1997 Feb; 378(2):205-28. PubMed ID: 9120061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of lordosis by dorsal midbrain lesions in the golden hamster.
    Muntz JA; Rose JD; Shults RC
    Brain Res Bull; 1980; 5(4):359-64. PubMed ID: 7407632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sensory activity in the telencephalon of the clawed toad, Xenopus laevis.
    Birkhofer M; Bleckmann H; Görner P
    Eur J Morphol; 1994 Aug; 32(2-4):262-6. PubMed ID: 7803176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organisation of lateral line and auditory areas in the midbrain of Xenopus laevis.
    Lowe DA
    J Comp Neurol; 1986 Mar; 245(4):498-513. PubMed ID: 3517085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of surface wave direction by the lateral line system of Xenopus: source localization before and after inactivation of different parts of the lateral line.
    Claas B; Münz H
    J Comp Physiol A; 1996 Feb; 178(2):253-68. PubMed ID: 8592306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Connections of the auditory midbrain in a teleost fish, Cyprinus carpio.
    Echteler SM
    J Comp Neurol; 1984 Dec; 230(4):536-51. PubMed ID: 6520250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Horseradish peroxidase study of tectal afferents in Xenopus laevis with special emphasis on their relationship to the lateral-line system.
    Zittlau KE; Claas B; Münz H
    Brain Behav Evol; 1988; 32(4):208-19. PubMed ID: 3233482
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hyperphagia after midbrain lesions involving the medial lemniscus.
    Skultety FM
    Exp Neurol; 1973 Jan; 38(1):6-19. PubMed ID: 4687657
    [No Abstract]   [Full Text] [Related]  

  • 14. Central representation of spatial and temporal surface wave parameters in the African clawed frog.
    Branoner F; Zhivkov Z; Ziehm U; Behrend O
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2012 Nov; 198(11):797-815. PubMed ID: 22976940
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of galanin-like immunoreactivity in the brain of Rana esculenta and Xenopus laevis.
    Lázár GY; Liposits ZS; Tóth P; Trasti SL; Maderdrut JL; Merchenthaler I
    J Comp Neurol; 1991 Aug; 310(1):45-67. PubMed ID: 1719037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Interhemispheric integration and role of the midbrain in its achievement].
    Liubimov NN; Baziian BKh; Bochorishvili VN
    Zh Vyssh Nerv Deiat Im I P Pavlova; 1980; 30(4):797-805. PubMed ID: 7434954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oculomotor areas in the rabbits midbrain and pretectum.
    Collewijn H
    J Neurobiol; 1975 Jan; 6(1):3-22. PubMed ID: 1185174
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Reactions of neurons of the disencephalon and midbrain of the salamander Salamandra salamandra to visual stimuli].
    Margolis SE
    Zh Evol Biokhim Fiziol; 1976; 12(4):384-6. PubMed ID: 983562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The gonadotropin-releasing hormone (GnRH) neuron system of the clawed toad Xenopus laevis.
    Sétáló G; Lázár G; Kozicz T
    Acta Biol Hung; 1994; 45(2-4):427-40. PubMed ID: 7725831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Neuronal activity of the midbrain central grey upon stimulation of the amygdaloid complex and the subthalamus].
    Dubrovina NI; Il'iuchenok RIu
    Neirofiziologiia; 1978; 10(3):245-51. PubMed ID: 673071
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.