These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 3046709)

  • 21. Neuronal encoding of sound direction in the auditory midbrain of the rainbow trout.
    Wubbels RJ; Schellart NA
    J Neurophysiol; 1997 Jun; 77(6):3060-74. PubMed ID: 9212257
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Flow sensing in developing Xenopus laevis is disrupted by visual cues and ototoxin exposure.
    Simmons AM; Warnecke M; Vu TT; Smith AT
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2015 Feb; 201(2):215-33. PubMed ID: 25380559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Factors affecting oogenesis in the South African clawed frog (Xenopus laevis).
    Green SL
    Comp Med; 2002 Aug; 52(4):307-12. PubMed ID: 12211272
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Neural pathway for aggressive display in Betta splendens: midbrain and hindbrain control of gill-cover erection behavior.
    Gorlick DL
    Brain Behav Evol; 1990; 36(4):227-36. PubMed ID: 2279236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Essential and substituted amino acids as chemical stimuli in the clawed frog Xenopus laevis].
    Kruzhalov NB
    Zh Evol Biokhim Fiziol; 1983; 19(5):503-6. PubMed ID: 6650035
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Germinal sites and migrating routes of cells in the mesencephalic and diencephalic auditory areas in the African clawed frog (Xenopus laevis).
    Huang YF; Zhang JY; Xi C; Zeng SJ; Zhang XW; Zuo MX
    Brain Res; 2011 Feb; 1373():67-78. PubMed ID: 21167138
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metamorphosis alters the response to spinal cord transection in Xenopus laevis frogs.
    Beattie MS; Bresnahan JC; Lopate G
    J Neurobiol; 1990 Oct; 21(7):1108-22. PubMed ID: 2258724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Cell proliferation and migration in the roof of the mesencephalon (tectum) in Xenopus laevis tadpoles and adult frogs normally and in brain injury. II. Cell proliferation and differentiation of the tectum in frogs].
    Reznikov KIu; Maliovanova SD
    Ontogenez; 1979; 10(4):350-8. PubMed ID: 481850
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Localization of arm representation in the cerebral peduncle of the non-human primate.
    Morecraft RJ; McNeal DW; Stilwell-Morecraft KS; Dvanajscak Z; Ge J; Schneider P
    J Comp Neurol; 2007 Sep; 504(2):149-67. PubMed ID: 17626268
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Afferent connections of the rostral medulla of the cat: a neural substrate for midbrain-medullary interactions in the modulation of pain.
    Abols IA; Basbaum AI
    J Comp Neurol; 1981 Sep; 201(2):285-97. PubMed ID: 7287930
    [TBL] [Abstract][Full Text] [Related]  

  • 31. LIM-homeodomain genes as territory markers in the brainstem of adult and developing Xenopus laevis.
    Moreno N; Bachy I; Rétaux S; González A
    J Comp Neurol; 2005 May; 485(3):240-54. PubMed ID: 15791640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Anthelmintic treatment to eradicate cutaneous capillariasis in a colony of South African clawed frogs (Xenopus laevis).
    Iglauer F; Willmann F; Hilken G; Huisinga E; Dimigen J
    Lab Anim Sci; 1997 Oct; 47(5):477-82. PubMed ID: 9355089
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A possible pathway connecting the photosensitive pineal eye to the swimming central pattern generator in young Xenopus laevis tadpoles.
    Jamieson D; Roberts A
    Brain Behav Evol; 1999 Dec; 54(6):323-37. PubMed ID: 10681603
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Estrogen-induced progestin receptors in the brain and pituitary of the South African clawed frog, Xenopus laevis.
    Roy EJ; Wilson MA; Kelley DB
    Neuroendocrinology; 1986; 42(1):51-6. PubMed ID: 3941759
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How a frog can learn what is where in the dark.
    Franosch JM; Lingenheil M; van Hemmen JL
    Phys Rev Lett; 2005 Aug; 95(7):078106. PubMed ID: 16196830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of anti-androgenic and estrogenic disrupting contaminants on breeding gland (nuptial pad) morphology, plasma testosterone levels, and plasma vitellogenin levels in male Xenopus laevis (African clawed frog).
    van Wyk JH; Pool EJ; Leslie AJ
    Arch Environ Contam Toxicol; 2003 Feb; 44(2):247-56. PubMed ID: 12520397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Amphibian experimental systems: developmental neurobiology and behavioral endocrinology in the clawed frog, Xenopus laevis.
    Kelley DB; Hayes M
    J Exp Zool Suppl; 1990; 4():148-9. PubMed ID: 1974779
    [No Abstract]   [Full Text] [Related]  

  • 38. Sensory activity in the telencephalon of the clawed toad, Xenopus laevis.
    Birkhofer M; Bleckmann H; Görner P
    Eur J Morphol; 1994 Aug; 32(2-4):262-6. PubMed ID: 7803176
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of water hardness on oocyte quality and embryo development in the African clawed frog (Xenopus laevis).
    Godfrey EW; Sanders GE
    Comp Med; 2004 Apr; 54(2):170-5. PubMed ID: 15134362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lateral line-mediated rheotactic behavior in tadpoles of the African clawed frog (Xenopus laevis).
    Simmons AM; Costa LM; Gerstein HB
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2004 Sep; 190(9):747-58. PubMed ID: 15300386
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.