These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 30467357)

  • 21. Gain-of-function mutations in beet DODA2 identify key residues for betalain pigment evolution.
    Bean A; Sunnadeniya R; Akhavan N; Campbell A; Brown M; Lloyd A
    New Phytol; 2018 Jul; 219(1):287-296. PubMed ID: 29754447
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tyrosine Hydroxylation in Betalain Pigment Biosynthesis Is Performed by Cytochrome P450 Enzymes in Beets (Beta vulgaris).
    Sunnadeniya R; Bean A; Brown M; Akhavan N; Hatlestad G; Gonzalez A; Symonds VV; Lloyd A
    PLoS One; 2016; 11(2):e0149417. PubMed ID: 26890886
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A core catalytic domain of the TyrA protein family: arogenate dehydrogenase from Synechocystis.
    Bonner CA; Jensen RA; Gander JE; Keyhani NO
    Biochem J; 2004 Aug; 382(Pt 1):279-91. PubMed ID: 15171683
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular and biochemical characterization of an Arabidopsis thaliana arogenate dehydrogenase with two highly similar and active protein domains.
    Rippert P; Matringe M
    Plant Mol Biol; 2002 Mar; 48(4):361-8. PubMed ID: 11905963
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An allosterically insensitive class of cyclohexadienyl dehydrogenase from Zymomonas mobilis.
    Zhao G; Xia T; Ingram LO; Jensen RA
    Eur J Biochem; 1993 Feb; 212(1):157-65. PubMed ID: 7916685
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First Betalain-Producing Bacteria Break the Exclusive Presence of the Pigments in the Plant Kingdom.
    Contreras-Llano LE; Guerrero-Rubio MA; Lozada-Ramírez JD; García-Carmona F; Gandía-Herrero F
    mBio; 2019 Mar; 10(2):. PubMed ID: 30890610
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of betalain compounds in two Beta vulgaris var. cicla and BvCYP76AD27 function identification in betalain biosynthesis.
    Dong J; Jiang W; Gao P; Yang T; Zhang W; Huangfu M; Zhang J; Che D
    Plant Physiol Biochem; 2023 Jun; 199():107711. PubMed ID: 37116227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cytosolic and Nuclear Co-localization of Betalain Biosynthetic Enzymes in Tobacco Suggests that Betalains Are Synthesized in the Cytoplasm and/or Nucleus of Betalainic Plant Cells.
    Chen N; Yu ZH; Xiao XG
    Front Plant Sci; 2017; 8():831. PubMed ID: 28572813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic engineering of a tyrosine-overproducing yeast platform using targeted metabolomics.
    Gold ND; Gowen CM; Lussier FX; Cautha SC; Mahadevan R; Martin VJ
    Microb Cell Fact; 2015 May; 14():73. PubMed ID: 26016674
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In situ and Ex situ adsorption and recovery of betalains from hairy root cultures of Beta vulgaris.
    Rudrappa T; Neelwarne B; Aswathanarayana RG
    Biotechnol Prog; 2004; 20(3):777-85. PubMed ID: 15176882
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Batch and fed-batch production of betalains by red beet (Beta vulgaris) hairy roots in a bubble column reactor.
    Pavlov A; Georgiev M; Bley T
    Z Naturforsch C J Biosci; 2007; 62(5-6):439-46. PubMed ID: 17708452
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cyclohexadienyl dehydrogenase from Pseudomonas stutzeri exemplifies a widespread type of tyrosine-pathway dehydrogenase in the TyrA protein family.
    Xie G; Bonner CA; Jensen RA
    Comp Biochem Physiol C Toxicol Pharmacol; 2000 Jan; 125(1):65-83. PubMed ID: 11790331
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Biosynthesis of phenylalanine and tyrosine in Flavobacteria].
    Waldner-Sander S; Keller B; Keller E; Lingens F
    Hoppe Seylers Z Physiol Chem; 1983 Oct; 364(10):1467-73. PubMed ID: 6642432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Variable enzymological patterning in tyrosine biosynthesis as a means of determining natural relatedness among the Pseudomonadaceae.
    Byng GS; Whitaker RJ; Gherna RL; Jensen RA
    J Bacteriol; 1980 Oct; 144(1):247-57. PubMed ID: 7419490
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptome and Metabolic Profiling Provides Insights into Betalain Biosynthesis and Evolution in Mirabilis jalapa.
    Polturak G; Heinig U; Grossman N; Battat M; Leshkowitz D; Malitsky S; Rogachev I; Aharoni A
    Mol Plant; 2018 Jan; 11(1):189-204. PubMed ID: 29247705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular basis of the evolution of alternative tyrosine biosynthetic routes in plants.
    Schenck CA; Holland CK; Schneider MR; Men Y; Lee SG; Jez JM; Maeda HA
    Nat Chem Biol; 2017 Sep; 13(9):1029-1035. PubMed ID: 28671678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plant betalains: Chemistry and biochemistry.
    Khan MI; Giridhar P
    Phytochemistry; 2015 Sep; 117():267-295. PubMed ID: 26101148
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A monofunctional prephenate dehydrogenase created by cleavage of the 5' 109 bp of the tyrA gene from Erwinia herbicola.
    Xia T; Zhao G; Fischer RS; Jensen RA
    J Gen Microbiol; 1992 Jul; 138(7):1309-16. PubMed ID: 1512561
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biochemical characterization of TyrA dehydrogenases from Saccharomyces cerevisiae (Ascomycota) and Pleurotus ostreatus (Basidiomycota).
    Lopez-Nieves S; Pringle A; Maeda HA
    Arch Biochem Biophys; 2019 Apr; 665():12-19. PubMed ID: 30771296
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Purification and properties of arogenate dehydrogenase from Actinoplanes missouriensis.
    Hund HK; Bär G; Lingens F
    Z Naturforsch C J Biosci; 1989; 44(9-10):797-801. PubMed ID: 2590341
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.