These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 30467460)

  • 1. Electrically Controlled Neurochemical Release from Dual-Layer Conducting Polymer Films for Precise Modulation of Neural Network Activity in Rat Barrel Cortex.
    Du ZJ; Bi GQ; Cui XT
    Adv Funct Mater; 2018 Mar; 28(12):. PubMed ID: 30467460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrically Controlled Neurochemical Delivery from Microelectrodes for Focal and Transient Modulation of Cellular Behavior.
    Tan C; Kushwah N; Cui XT
    Biosensors (Basel); 2021 Sep; 11(9):. PubMed ID: 34562938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid modulation of local neural activity by controlled drug release from polymer-coated recording microelectrodes.
    Stauffer WR; Lau PM; Bi GQ; Cui XT
    J Neural Eng; 2011 Aug; 8(4):044001. PubMed ID: 21633143
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fully flexible implantable neural probes for electrophysiology recording and controlled neurochemical modulation.
    Malekoshoaraie MH; Wu B; Krahe DD; Ahmed Z; Pupa S; Jain V; Cui XT; Chamanzar M
    Microsyst Nanoeng; 2024; 10():91. PubMed ID: 38947533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An interpenetrating and patternable conducting polymer hydrogel for electrically stimulated release of glutamate.
    Bansal M; Raos B; Aqrawe Z; Wu Z; Svirskis D
    Acta Biomater; 2022 Jan; 137():124-135. PubMed ID: 34644612
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface modification of neural recording electrodes with conducting polymer/biomolecule blends.
    Cui X; Lee VA; Raphael Y; Wiler JA; Hetke JF; Anderson DJ; Martin DC
    J Biomed Mater Res; 2001 Aug; 56(2):261-72. PubMed ID: 11340598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multifunctional hydrogel coatings on the surface of neural cuff electrode for improving electrode-nerve tissue interfaces.
    Heo DN; Song SJ; Kim HJ; Lee YJ; Ko WK; Lee SJ; Lee D; Park SJ; Zhang LG; Kang JY; Do SH; Lee SH; Kwon IK
    Acta Biomater; 2016 Jul; 39():25-33. PubMed ID: 27163406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poly (3, 4-ethylenedioxythiophene)-ionic liquid coating improves neural recording and stimulation functionality of MEAs.
    Du ZJ; Luo X; Weaver C; Cui XT
    J Mater Chem C Mater; 2015 Jul; 3(25):6515-6524. PubMed ID: 26491540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical Evaluation of Layer-by-Layer Drug Delivery Coating for Neural Interfaces.
    Olczak KP; McDermott MD; Otto KJ
    ACS Appl Bio Mater; 2019 Dec; 2(12):5597-5607. PubMed ID: 35021554
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multilayer poly(3,4-ethylenedioxythiophene)-dexamethasone and poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate-carbon nanotubes coatings on glassy carbon microelectrode arrays for controlled drug release.
    Castagnola E; Carli S; Vomero M; Scarpellini A; Prato M; Goshi N; Fadiga L; Kassegne S; Ricci D
    Biointerphases; 2017 Jul; 12(3):031002. PubMed ID: 28704999
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conducting polymers on hydrogel-coated neural electrode provide sensitive neural recordings in auditory cortex.
    Kim DH; Wiler JA; Anderson DJ; Kipke DR; Martin DC
    Acta Biomater; 2010 Jan; 6(1):57-62. PubMed ID: 19651250
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional ferrocene polymer multilayer coatings for implantable medical devices: Biocompatible, antifouling, and ROS-sensitive controlled release of therapeutic drugs.
    Woo J; Na Y; Choi WI; Kim S; Kim J; Hong J; Sung D
    Acta Biomater; 2021 Apr; 125():242-252. PubMed ID: 33657454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct in Vivo Electrochemical Detection of Resting Dopamine Using Poly(3,4-ethylenedioxythiophene)/Carbon Nanotube Functionalized Microelectrodes.
    Taylor IM; Patel NA; Freedman NC; Castagnola E; Cui XT
    Anal Chem; 2019 Oct; 91(20):12917-12927. PubMed ID: 31512849
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conducting polymer coated neural recording electrodes.
    Harris AR; Morgan SJ; Chen J; Kapsa RM; Wallace GG; Paolini AG
    J Neural Eng; 2013 Feb; 10(1):016004. PubMed ID: 23234724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chronic intracortical neural recordings using microelectrode arrays coated with PEDOT-TFB.
    Charkhkar H; Knaack GL; McHail DG; Mandal HS; Peixoto N; Rubinson JF; Dumas TC; Pancrazio JJ
    Acta Biomater; 2016 Mar; 32():57-67. PubMed ID: 26689462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chronic neural recordings using silicon microelectrode arrays electrochemically deposited with a poly(3,4-ethylenedioxythiophene) (PEDOT) film.
    Ludwig KA; Uram JD; Yang J; Martin DC; Kipke DR
    J Neural Eng; 2006 Mar; 3(1):59-70. PubMed ID: 16510943
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced neural activity detection with microelectrode arrays modified by drug-loaded calcium alginate/chitosan hydrogel.
    Wang Y; Han M; Jing L; Jia Q; Lv S; Xu Z; Liu J; Cai X
    Biosens Bioelectron; 2025 Jan; 267():116837. PubMed ID: 39369514
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Vivo Electrochemical Analysis of a PEDOT/MWCNT Neural Electrode Coating.
    Alba NA; Du ZJ; Catt KA; Kozai TD; Cui XT
    Biosensors (Basel); 2015 Oct; 5(4):618-46. PubMed ID: 26473938
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemically triggered release of acetylcholine from scCO
    Löffler S; Seyock S; Nybom R; Jacobson GB; Richter-Dahlfors A
    J Control Release; 2016 Dec; 243():283-290. PubMed ID: 27793684
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 10.