These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
114 related articles for article (PubMed ID: 30467574)
61. Abatement of sulfur hexafluoride emissions from the semiconductor manufacturing process by atmospheric-pressure plasmas. Lee HM; Chang MB; Wu KY J Air Waste Manag Assoc; 2004 Aug; 54(8):960-70. PubMed ID: 15373364 [TBL] [Abstract][Full Text] [Related]
62. Photocatalytic degradation of Reactive Red 22 in aqueous solution by UV-LED radiation. Wang WY; Ku Y Water Res; 2006 Jul; 40(12):2249-58. PubMed ID: 16790260 [TBL] [Abstract][Full Text] [Related]
63. Use of radiation sources with mercury isotopes for real-time highly sensitive and selective benzene determination in air and natural gas by differential absorption spectrometry with the direct Zeeman effect. Revalde G; Sholupov S; Ganeev A; Pogarev S; Ryzhov V; Skudra A Anal Chim Acta; 2015 Aug; 887():172-178. PubMed ID: 26320799 [TBL] [Abstract][Full Text] [Related]
64. Synergy of MS2 disinfection by sequential exposure to tailored UV wavelengths. Hull NM; Linden KG Water Res; 2018 Oct; 143():292-300. PubMed ID: 29986239 [TBL] [Abstract][Full Text] [Related]
66. High-power blue/UV light-emitting diodes as excitation sources for sensitive detection. Kuo JS; Kuyper CL; Allen PB; Fiorini GS; Chiu DT Electrophoresis; 2004 Nov; 25(21-22):3796-804. PubMed ID: 15565689 [TBL] [Abstract][Full Text] [Related]
67. Ultraviolet light emitting diodes and hydrogen peroxide in the photodegradation of aqueous phenol. Vilhunen SH; Sillanpää ME J Hazard Mater; 2009 Jan; 161(2-3):1530-4. PubMed ID: 18555601 [TBL] [Abstract][Full Text] [Related]
68. [A novel yellow organic light-emitting device]. Ma C; Wang H; Hao YY; Gao ZX; Zhou HF; Xu BS Guang Pu Xue Yu Guang Pu Fen Xi; 2008 Jul; 28(7):1479-82. PubMed ID: 18844143 [TBL] [Abstract][Full Text] [Related]
69. Dissociation of sulfur hexafluoride tracer gas in the presence of an indoor combustion source. Guo Z; Mosley RB; Wasson SJ; Fortmann RC; McBrian JA J Air Waste Manag Assoc; 2001 Apr; 51(4):616-22. PubMed ID: 11321918 [TBL] [Abstract][Full Text] [Related]
70. Diffusion-dependence of pulmonary gas mixing at 5.5 and 9.5 ATA. van Liew HD; Thalmann ED; Sponholtz DK Undersea Biomed Res; 1979 Sep; 6(3):251-8. PubMed ID: 524527 [TBL] [Abstract][Full Text] [Related]
71. Theoretical Characterizations on the Eco-Friendly Gas Tetrafluoropropyne for Electrical Insulation to Replace Sulfur Hexafluoride. Zhang M; Hou H; Wang B J Phys Chem A; 2023 Sep; 127(38):7984-7996. PubMed ID: 37713647 [TBL] [Abstract][Full Text] [Related]
72. Fabrication of Fe3O4@SiO2@TiO2 nanoparticles supported by graphene oxide sheets for the repeated adsorption and photocatalytic degradation of rhodamine B under UV irradiation. Chen F; Yan F; Chen Q; Wang Y; Han L; Chen Z; Fang S Dalton Trans; 2014 Sep; 43(36):13537-44. PubMed ID: 25087943 [TBL] [Abstract][Full Text] [Related]
73. State-of-the-art and current challenges for TiO Bertagna Silva D; Buttiglieri G; Babić S Environ Sci Pollut Res Int; 2021 Jan; 28(1):103-120. PubMed ID: 33052564 [TBL] [Abstract][Full Text] [Related]
74. Evaluation survey of microbial disinfection methods in UV-LED water treatment systems. Li X; Cai M; Wang L; Niu F; Yang D; Zhang G Sci Total Environ; 2019 Apr; 659():1415-1427. PubMed ID: 31096352 [TBL] [Abstract][Full Text] [Related]
75. Inactivation of Salmonella spp. in wheat flour by 395 nm pulsed light emitting diode (LED) treatment and the related functional and structural changes of gluten. Du L; Jaya Prasad A; Gänzle M; Roopesh MS Food Res Int; 2020 Jan; 127():108716. PubMed ID: 31882073 [TBL] [Abstract][Full Text] [Related]
76. In Situ Charge Transfer at the Ag@ZnO Photoelectrochemical Interface toward the High Photocatalytic Performance of H Trang TNQ; Phan TB; Nam ND; Thu VTH ACS Appl Mater Interfaces; 2020 Mar; 12(10):12195-12206. PubMed ID: 32013392 [TBL] [Abstract][Full Text] [Related]
77. Efficiency of clay--TiO2 nanocomposites on the photocatalytic elimination of a model hydrophobic air pollutant. Kibanova D; Cervini-Silva J; Destaillats H Environ Sci Technol; 2009 Mar; 43(5):1500-6. PubMed ID: 19350926 [TBL] [Abstract][Full Text] [Related]
78. A green synthesized recyclable ZnO/MIL-101(Fe) for Rhodamine B dye removal via adsorption and photo-degradation under UV and visible light irradiation. Amdeha E; Mohamed RS Environ Technol; 2021 Feb; 42(6):842-859. PubMed ID: 31327310 [TBL] [Abstract][Full Text] [Related]
79. Environmental remediation by an integrated microwave/ UV-illumination method. 1. Microwave-assisted degradation of rhodamine-B dye in aqueous TiO2 dispersions. Horikoshi S; Hidaka H; Serpone N Environ Sci Technol; 2002 Mar; 36(6):1357-66. PubMed ID: 11944693 [TBL] [Abstract][Full Text] [Related]
80. Photoprotection and photoreception of intraocular lenses under xenon and white LED illumination. Artigas JM; Navea A; García-Domene MC; Artigas C; Lanzagorta A J Fr Ophtalmol; 2016 May; 39(5):421-7. PubMed ID: 27180649 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]