These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 30467607)

  • 1. Surface swimmers, harnessing the interface to self-propel.
    Grosjean G; Hubert M; Collard Y; Pillitteri S; Vandewalle N
    Eur Phys J E Soft Matter; 2018 Nov; 41(11):137. PubMed ID: 30467607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-propulsion of symmetric chemically active particles: Point-source model and experiments on camphor disks.
    Boniface D; Cottin-Bizonne C; Kervil R; Ybert C; Detcheverry F
    Phys Rev E; 2019 Jun; 99(6-1):062605. PubMed ID: 31330666
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realization of a push-me-pull-you swimmer at low Reynolds numbers.
    Silverberg O; Demir E; Mishler G; Hosoume B; Trivedi N; Tisch C; Plascencia D; Pak OS; Araci IE
    Bioinspir Biomim; 2020 Sep; 15(6):. PubMed ID: 32620000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magnetocapillary self-assemblies: Locomotion and micromanipulation along a liquid interface.
    Grosjean G; Hubert M; Vandewalle N
    Adv Colloid Interface Sci; 2018 May; 255():84-93. PubMed ID: 28754380
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propulsion Mechanism of Flexible Microbead Swimmers in the Low Reynolds Number Regime.
    Li YH; Chen SC
    Micromachines (Basel); 2020 Dec; 11(12):. PubMed ID: 33333847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Propulsion of an elastic filament in a shear-thinning fluid.
    Qin K; Peng Z; Chen Y; Nganguia H; Zhu L; Pak OS
    Soft Matter; 2021 Apr; 17(14):3829-3839. PubMed ID: 33885447
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Designing Micro- and Nanoswimmers for Specific Applications.
    Katuri J; Ma X; Stanton MM; Sánchez S
    Acc Chem Res; 2017 Jan; 50(1):2-11. PubMed ID: 27809479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled Propulsion of Two-Dimensional Microswimmers in a Precessing Magnetic Field.
    Tottori S; Nelson BJ
    Small; 2018 Jun; 14(24):e1800722. PubMed ID: 29749100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetically controlled ferromagnetic swimmers.
    Hamilton JK; Petrov PG; Winlove CP; Gilbert AD; Bryan MT; Ogrin FY
    Sci Rep; 2017 Mar; 7():44142. PubMed ID: 28276490
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phase-separation models for swimming enhancement in complex fluids.
    Man Y; Lauga E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023004. PubMed ID: 26382500
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophobicity Influence on Swimming Performance of Magnetically Driven Miniature Helical Swimmers.
    Ye C; Liu J; Wu X; Wang B; Zhang L; Zheng Y; Xu T
    Micromachines (Basel); 2019 Mar; 10(3):. PubMed ID: 30845732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stochastic low Reynolds number swimmers.
    Golestanian R; Ajdari A
    J Phys Condens Matter; 2009 May; 21(20):204104. PubMed ID: 21825513
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review of Bubble Applications in Microrobotics: Propulsion, Manipulation, and Assembly.
    Zhou Y; Dai L; Jiao N
    Micromachines (Basel); 2022 Jul; 13(7):. PubMed ID: 35888885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From diffusive mass transfer in Stokes flow to low Reynolds number Marangoni boats.
    Ender H; Kierfeld J
    Eur Phys J E Soft Matter; 2021 Feb; 44(1):4. PubMed ID: 33580288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Janus magnetoelastic membrane swimmers.
    Xiong Y; Yuan H; Olvera de la Cruz M
    Soft Matter; 2023 Sep; 19(35):6721-6730. PubMed ID: 37622382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Reynolds-number, biflagellated Quincke swimmers with multiple forms of motion.
    Han E; Zhu L; Shaevitz JW; Stone HA
    Proc Natl Acad Sci U S A; 2021 Jul; 118(29):. PubMed ID: 34266946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rotational propulsion enabled by inertia.
    Nadal F; Pak OS; Zhu L; Brandt L; Lauga E
    Eur Phys J E Soft Matter; 2014 Jul; 37(7):16. PubMed ID: 25034393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translations and rotations at low Reynolds number: a study of simple model swimmers with finite amplitude strokes.
    Leoni M; Liverpool TB
    Eur Phys J E Soft Matter; 2012 Dec; 35(12):9803. PubMed ID: 23224111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic screening and dissociation are crucial for understanding chemical self-propulsion in polar solvents.
    Brown AT; Poon WC; Holm C; de Graaf J
    Soft Matter; 2017 Feb; 13(6):1200-1222. PubMed ID: 28098324
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assembly, disassembly, and anomalous propulsion of microscopic helices.
    Tottori S; Zhang L; Peyer KE; Nelson BJ
    Nano Lett; 2013 Sep; 13(9):4263-8. PubMed ID: 23947427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.