These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 30467840)
1. New insights into red cell rheology and adhesion in patients with sickle cell anaemia during vaso-occlusive crises. Lapoumeroulie C; Connes P; El Hoss S; Hierso R; Charlot K; Lemonne N; Elion J; Le Van Kim C; Romana M; Hardy-Dessources MD Br J Haematol; 2019 Jun; 185(5):991-994. PubMed ID: 30467840 [No Abstract] [Full Text] [Related]
2. Exacerbation of oxidative stress during sickle vaso-occlusive crisis is associated with decreased anti-band 3 autoantibodies rate and increased red blood cell-derived microparticle level: a prospective study. Hierso R; Lemonne N; Villaescusa R; Lalanne-Mistrih ML; Charlot K; Etienne-Julan M; Tressières B; Lamarre Y; Tarer V; Garnier Y; Hernandez AA; Ferracci S; Connes P; Romana M; Hardy-Dessources MD Br J Haematol; 2017 Mar; 176(5):805-813. PubMed ID: 27984639 [TBL] [Abstract][Full Text] [Related]
3. The paradox of the serrated sickle erythrocyte: The importance of the red blood cell membrane topography. Ballas SK; Connes P Clin Hemorheol Microcirc; 2015 Oct; 63(2):149-52. PubMed ID: 26484716 [TBL] [Abstract][Full Text] [Related]
5. Rheological studies of erythrocyte-endothelial cell interactions in sickle cell disease. Barabino GA; McIntire LV; Eskin SG; Sears DA; Udden M Prog Clin Biol Res; 1987; 240():113-27. PubMed ID: 3615482 [TBL] [Abstract][Full Text] [Related]
6. Fluctuating deformability of oxygenated sickle erythrocytes in the asymptomatic state and in painful crisis. Lucas GS; Caldwell NM; Stuart J Br J Haematol; 1985 Feb; 59(2):363-8. PubMed ID: 3970860 [TBL] [Abstract][Full Text] [Related]
7. Rheologic predictors of the severity of the painful sickle cell crisis. Ballas SK; Larner J; Smith ED; Surrey S; Schwartz E; Rappaport EF Blood; 1988 Oct; 72(4):1216-23. PubMed ID: 3167204 [TBL] [Abstract][Full Text] [Related]
8. Rheology of the sickle cell disorders. Stuart J; Johnson CS Baillieres Clin Haematol; 1987 Sep; 1(3):747-75. PubMed ID: 3327564 [TBL] [Abstract][Full Text] [Related]
9. Blood rheological abnormalities in sickle cell anemia. Connes P; Renoux C; Romana M; Abkarian M; Joly P; Martin C; Hardy-Dessources MD; Ballas SK Clin Hemorheol Microcirc; 2018; 68(2-3):165-172. PubMed ID: 29614630 [TBL] [Abstract][Full Text] [Related]
10. Perfluorocarbon compounds: effects on the rheological properties of sickle erythrocytes in vitro. Reindorf CA; Kurantsin-Mills J; Allotey JB; Castro O Am J Hematol; 1985 Jul; 19(3):229-36. PubMed ID: 4014223 [TBL] [Abstract][Full Text] [Related]
11. Pathophysiological insights in sickle cell disease. Odièvre MH; Verger E; Silva-Pinto AC; Elion J Indian J Med Res; 2011 Oct; 134(4):532-7. PubMed ID: 22089617 [TBL] [Abstract][Full Text] [Related]
12. Alpha-thalassaemia promotes frequent vaso-occlusive crises in children with sickle cell anaemia through haemorheological changes. Renoux C; Connes P; Nader E; Skinner S; Faes C; Petras M; Bertrand Y; Garnier N; Cuzzubbo D; Divialle-Doumdo L; Kebaïli K; Renard C; Gauthier A; Etienne-Julan M; Cannas G; Martin C; Hardy-Dessources MD; Pialoux V; Romana M; Joly P Pediatr Blood Cancer; 2017 Aug; 64(8):. PubMed ID: 28097791 [TBL] [Abstract][Full Text] [Related]
13. The influence of foetal haemoglobin on the frequency of vaso-occlusive crisis in sickle cell anaemia patients. Enosolease ME; Ejele OA; Awodu OA Niger Postgrad Med J; 2005 Jun; 12(2):102-5. PubMed ID: 15997258 [TBL] [Abstract][Full Text] [Related]
14. The role of blood rheology in sickle cell disease. Connes P; Alexy T; Detterich J; Romana M; Hardy-Dessources MD; Ballas SK Blood Rev; 2016 Mar; 30(2):111-8. PubMed ID: 26341565 [TBL] [Abstract][Full Text] [Related]
15. Factor H interferes with the adhesion of sickle red cells to vascular endothelium: a novel disease-modulating molecule. Lombardi E; Matte A; Risitano AM; Ricklin D; Lambris JD; De Zanet D; Jokiranta ST; Martinelli N; Scambi C; Salvagno G; Bisoffi Z; Colato C; Siciliano A; Bortolami O; Mazzuccato M; Zorzi F; De Marco L; De Franceschi L Haematologica; 2019 May; 104(5):919-928. PubMed ID: 30630982 [TBL] [Abstract][Full Text] [Related]
16. Red blood cell morphology in sickle cell anemia as determined by image processing analysis: the relationship to painful crises. Westerman MP; Bacus JW Am J Clin Pathol; 1983 Jun; 79(6):667-72. PubMed ID: 6846257 [TBL] [Abstract][Full Text] [Related]
17. Magnetic Resonance Imaging Assessment of Kidney Oxygenation and Perfusion During Sickle Cell Vaso-occlusive Crises. Deux JF; Audard V; Brugières P; Habibi A; Manea EM; Guillaud-Danis C; Godeau B; Galactéros F; Stehlé T; Lang P; Grimbert P; Audureau E; Rahmouni A; Bartolucci P Am J Kidney Dis; 2017 Jan; 69(1):51-59. PubMed ID: 27663041 [TBL] [Abstract][Full Text] [Related]
18. Pluronic F-68 reduces the endothelial adherence and improves the rheology of liganded sickle erythrocytes. Smith CM; Hebbel RP; Tukey DP; Clawson CC; White JG; Vercellotti GM Blood; 1987 Jun; 69(6):1631-6. PubMed ID: 3580571 [TBL] [Abstract][Full Text] [Related]
19. Biomechanics and biorheology of red blood cells in sickle cell anemia. Li X; Dao M; Lykotrafitis G; Karniadakis GE J Biomech; 2017 Jan; 50():34-41. PubMed ID: 27876368 [TBL] [Abstract][Full Text] [Related]
20. [Pathophysiology and treatment of sickle-cell disease]. van Beers EJ; Peters M; Biemond BJ Ned Tijdschr Geneeskd; 2005 May; 149(21):1144-9. PubMed ID: 15940917 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]