BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 30468312)

  • 21. Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis.
    Yu CC; Kuo YY; Liang CF; Chien WT; Wu HT; Chang TC; Jan FD; Lin CC
    Bioconjug Chem; 2012 Apr; 23(4):714-24. PubMed ID: 22424277
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lipase-based on starch material as a development matrix with magnetite cross-linked enzyme aggregates and its application.
    Mehde AA; Mehdi WA; Severgün O; Çakar S; Özacar M
    Int J Biol Macromol; 2018 Dec; 120(Pt B):1533-1543. PubMed ID: 30261255
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inulinase immobilized gold-magnetic nanoparticles as a magnetically recyclable biocatalyst for facial and efficient inulin biotransformation to high fructose syrup.
    Mohammadi M; Rezaei Mokarram R; Ghorbani M; Hamishehkar H
    Int J Biol Macromol; 2019 Feb; 123():846-855. PubMed ID: 30452993
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Immobilization of β-glucosidase on a magnetic nanoparticle improves thermostability: application in cellobiose hydrolysis.
    Verma ML; Chaudhary R; Tsuzuki T; Barrow CJ; Puri M
    Bioresour Technol; 2013 May; 135():2-6. PubMed ID: 23419989
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of amine-functionalized Fe
    Lin J; Wen Q; Chen S; Le X; Zhou X; Huang L
    Int J Biol Macromol; 2017 Mar; 96():377-383. PubMed ID: 28013004
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Immobilization of L-Asparaginase on Magnetic Nanoparticles for Cancer Treatment.
    Orhan H; Aktaş Uygun D
    Appl Biochem Biotechnol; 2020 Aug; 191(4):1432-1443. PubMed ID: 32103470
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Stability evaluation of 6-phosphogluconate dehydrogenase immobilized on amino-functionalized magnetic nanoparticles.
    Sahin S
    Prep Biochem Biotechnol; 2019; 49(6):590-596. PubMed ID: 30929562
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Low-cost mussel inspired poly(Catechol/Polyamine) modified magnetic nanoparticles as a versatile platform for enhanced activity of immobilized enzyme.
    Tang W; Chen C; Sun W; Wang P; Wei D
    Int J Biol Macromol; 2019 May; 128():814-824. PubMed ID: 30708009
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of the catalytic behavior of pullulanases chelated onto nickel (II)-modified magnetic nanoparticles.
    Wang J; Liu Z; Zhou Z
    Enzyme Microb Technol; 2017 Jun; 101():9-16. PubMed ID: 28433193
    [TBL] [Abstract][Full Text] [Related]  

  • 30. β-Glucosidase Immobilized on Magnetic Nanoparticles: Controlling Biomolecule Footprint and Particle Functional Group Density to Navigate the Activity-Stability Tradeoff.
    Vasicek TW; Guillermo S; Swofford DR; Durchman J; Jenkins SV
    ACS Appl Bio Mater; 2022 Nov; 5(11):5347-5355. PubMed ID: 36331934
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Immobilization of a lactase onto a magnetic support by covalent attachment to polyethyleneimine-glutaraldehyde-activated magnetite.
    Dekker RF
    Appl Biochem Biotechnol; 1989 Dec; 22(3):289-310. PubMed ID: 2512853
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Enhanced Performance of Rhizopus oryzae Lipase by Reasonable Immobilization on Magnetic Nanoparticles and Its Application in Synthesis 1,3-Diacyglycerol.
    Zhao JF; Lin JP; Yang LR; Wu MB
    Appl Biochem Biotechnol; 2019 Jul; 188(3):677-689. PubMed ID: 30617446
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced activity and stability of papain by covalent immobilization on porous magnetic nanoparticles.
    Sheng W; Xi Y; Zhang L; Ye T; Zhao X
    Int J Biol Macromol; 2018 Jul; 114():143-148. PubMed ID: 29567500
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Interaction of Yarrowia lipolytica lipase with dithiocarbamate modified magnetic carbon Fe
    Fathi Z; Doustkhah E; Rostamnia S; Darvishi F; Ghodsi A; Ide Y
    Int J Biol Macromol; 2018 Oct; 117():218-224. PubMed ID: 29800659
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Expression, purification and immobilization of recombinant AiiA enzyme onto magnetic nanoparticles.
    Beladiya C; Tripathy RK; Bajaj P; Aggarwal G; Pande AH
    Protein Expr Purif; 2015 Sep; 113():56-62. PubMed ID: 25982248
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of the Hydrolysis Specificity of an Aminopeptidase from Bacillus licheniformis SWJS33 Using Synthetic Peptides and Soybean Protein Isolate.
    Lei F; Zhao Q; Lin L; Sun B; Zhao M
    J Agric Food Chem; 2017 Jan; 65(1):167-173. PubMed ID: 27992209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Development of novel robust nanobiocatalyst for detergents formulations and the other applications of alkaline protease.
    Ibrahim AS; El-Toni AM; Al-Salamah AA; Almaary KS; El-Tayeb MA; Elbadawi YB; Antranikian G
    Bioprocess Biosyst Eng; 2016 May; 39(5):793-805. PubMed ID: 26861651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization and immobilization of arylsulfatase on modified magnetic nanoparticles for desulfation of agar.
    Xiao Q; Yin Q; Ni H; Cai H; Wu C; Xiao A
    Int J Biol Macromol; 2017 Jan; 94(Pt A):576-584. PubMed ID: 27746358
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Immobilization of trypsin onto Fe
    Aslani E; Abri A; Pazhang M
    Colloids Surf B Biointerfaces; 2018 Oct; 170():553-562. PubMed ID: 29975903
    [TBL] [Abstract][Full Text] [Related]  

  • 40. β-Agarase immobilized on tannic acid-modified Fe
    Xiao Q; Liu C; Ni H; Zhu Y; Jiang Z; Xiao A
    Food Chem; 2019 Jan; 272():586-595. PubMed ID: 30309586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.