These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 30468606)

  • 1. Antiferromagnetism Emerging in a Ferromagnet with Gain.
    Yang H; Wang C; Yu T; Cao Y; Yan P
    Phys Rev Lett; 2018 Nov; 121(19):197201. PubMed ID: 30468606
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures.
    He QL; Kou X; Grutter AJ; Yin G; Pan L; Che X; Liu Y; Nie T; Zhang B; Disseler SM; Kirby BJ; Ratcliff Ii W; Shao Q; Murata K; Zhu X; Yu G; Fan Y; Montazeri M; Han X; Borchers JA; Wang KL
    Nat Mater; 2017 Jan; 16(1):94-100. PubMed ID: 27798622
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge.
    Nayak AK; Fischer JE; Sun Y; Yan B; Karel J; Komarek AC; Shekhar C; Kumar N; Schnelle W; Kübler J; Felser C; Parkin SS
    Sci Adv; 2016 Apr; 2(4):e1501870. PubMed ID: 27152355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement and stabilization of exchange bias in ferromagnet/antiferromagnet/ferromagnet trilayers.
    Chi X; Hu Y
    Nanotechnology; 2020 Mar; 31(12):125703. PubMed ID: 31783382
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large topological Hall effect in the non-collinear phase of an antiferromagnet.
    Sürgers C; Fischer G; Winkel P; Löhneysen HV
    Nat Commun; 2014 Mar; 5():3400. PubMed ID: 24594621
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic proximity effects in antiferromagnet/ferromagnet bilayers: the impact on the Néel temperature.
    Lenz K; Zander S; Kuch W
    Phys Rev Lett; 2007 Jun; 98(23):237201. PubMed ID: 17677931
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spin reorientation at the antiferromagnetic NiO(001) surface in response to an adjacent ferromagnet.
    Ohldag H; Scholl A; Nolting F; Anders S; Hillebrecht FU; Stöhr J
    Phys Rev Lett; 2001 Mar; 86(13):2878-81. PubMed ID: 11290062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning the magnetic coupling across ultrathin antiferromagnetic films by controlling atomic-scale roughness.
    Kuch W; Chelaru LI; Offi F; Wang J; Kotsugi M; Kirschner J
    Nat Mater; 2006 Feb; 5(2):128-33. PubMed ID: 16400332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Giant Skyrmions stabilized by dipole-dipole interactions in thin ferromagnetic films.
    Ezawa M
    Phys Rev Lett; 2010 Nov; 105(19):197202. PubMed ID: 21231193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Symmetry driven irreversibilities at ferromagnetic-antiferromagnetic interfaces.
    Hoffmann A
    Phys Rev Lett; 2004 Aug; 93(9):097203. PubMed ID: 15447135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Laser-induced ultrafast spin reorientation in the antiferromagnet TmFeO3.
    Kimel AV; Kirilyuk A; Tsvetkov A; Pisarev RV; Rasing T
    Nature; 2004 Jun; 429(6994):850-3. PubMed ID: 15215858
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Current-induced skyrmion generation and dynamics in symmetric bilayers.
    Hrabec A; Sampaio J; Belmeguenai M; Gross I; Weil R; Chérif SM; Stashkevich A; Jacques V; Thiaville A; Rohart S
    Nat Commun; 2017 Jun; 8():15765. PubMed ID: 28593949
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of reentering and switching ferromagnet/antiferromagnet exchange bias by antiferromagnetic proximity effect.
    Hu Y
    Nanotechnology; 2019 Jan; 30(2):025708. PubMed ID: 30398163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnetic Skyrmions and Skyrmion Clusters in the Helical Phase of Cu_{2}OSeO_{3}.
    Müller J; Rajeswari J; Huang P; Murooka Y; Rønnow HM; Carbone F; Rosch A
    Phys Rev Lett; 2017 Sep; 119(13):137201. PubMed ID: 29341720
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetism. Blowing magnetic skyrmion bubbles.
    Jiang W; Upadhyaya P; Zhang W; Yu G; Jungfleisch MB; Fradin FY; Pearson JE; Tserkovnyak Y; Wang KL; Heinonen O; te Velthuis SG; Hoffmann A
    Science; 2015 Jul; 349(6245):283-6. PubMed ID: 26067256
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lattice-distortion Induced Magnetic Transition from Low-temperature Antiferromagnetism to High-temperature Ferrimagnetism in Double Perovskites A2FeOsO6 (A = Ca, Sr).
    Hou YS; Xiang HJ; Gong XG
    Sci Rep; 2015 Aug; 5():13159. PubMed ID: 26289139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-quasiparticle states in a half-metallic ferromagnet with antiferromagnetic s-d(f) interaction.
    Irkhin VY
    J Phys Condens Matter; 2015 Apr; 27(15):155602. PubMed ID: 25812682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic coupling at rare earth ferromagnet/transition metal ferromagnet interfaces: A comprehensive study of Gd/Ni.
    Higgs TD; Bonetti S; Ohldag H; Banerjee N; Wang XL; Rosenberg AJ; Cai Z; Zhao JH; Moler KA; Robinson JW
    Sci Rep; 2016 Jul; 6():30092. PubMed ID: 27444683
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How antiferromagnetism drives the magnetization of a ferromagnetic thin film to align out of plane.
    Wang BY; Hong JY; Yang KH; Chan YL; Wei DH; Lin HJ; Lin MT
    Phys Rev Lett; 2013 Mar; 110(11):117203. PubMed ID: 25166570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppressed weak antilocalization in the topological insulator Bi
    Bhowmick T; Jerng SK; Jeon JH; Roy SB; Kim YH; Seo J; Kim JS; Chun SH
    Nanoscale; 2017 Jan; 9(2):844-849. PubMed ID: 27991636
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.