These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 30469038)

  • 1. Catalytic oxidation at pilot-scale: Efficient degradation of volatile organic compounds in gas phase.
    Ribeiro BMB; Pinto JF; Suppino RS; Marçola L; Landers R; Tomaz E
    J Hazard Mater; 2019 Mar; 365():581-589. PubMed ID: 30469038
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalytic combustion of volatile organic compounds.
    Everaert K; Baeyens J
    J Hazard Mater; 2004 Jun; 109(1-3):113-39. PubMed ID: 15177752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation of volatile organic compounds in the gas phase by heterogeneous photocatalysis with titanium dioxide/ultraviolet light.
    Rochetto UL; Tomaz E
    J Air Waste Manag Assoc; 2015 Jul; 65(7):810-7. PubMed ID: 26079554
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic oxidation of dichloromethane and toluene over platinum alumite catalyst.
    Wang L; Sakurai M; Kameyama H
    J Hazard Mater; 2008 Jun; 154(1-3):390-5. PubMed ID: 18054162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic oxidation for air pollution control.
    Tahir SF; Koh CA
    Environ Sci Pollut Res Int; 1996 Mar; 3(1):20-3. PubMed ID: 24234881
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient photocatalytic oxidation of gaseous toluene in a bubbling reactor of water.
    Liu B; Zhan Y; Xie R; Huang H; Li K; Zeng Y; Shrestha RP; Kim Oanh NT; Winijkul E
    Chemosphere; 2019 Oct; 233():754-761. PubMed ID: 31200135
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concurrent catalytic removal of typical volatile organic compound mixtures over Au-Pd/α-MnO
    Xia Y; Xia L; Liu Y; Yang T; Deng J; Dai H
    J Environ Sci (China); 2018 Feb; 64():276-288. PubMed ID: 29478649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic oxidation of organic compounds in incineration flue gas by a commercial palladium catalyst.
    Wey MY; Yang WY; Huang HC; Chen JC
    J Air Waste Manag Assoc; 2002 Feb; 52(2):198-207. PubMed ID: 15143795
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic oxidation of VOCs over Mn/TiO
    Shu Y; Xu Y; Huang H; Ji J; Liang S; Wu M; Leung DYC
    Chemosphere; 2018 Oct; 208():550-558. PubMed ID: 29890493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Personal and ambient exposures to air toxics in Camden, New Jersey.
    Lioy PJ; Fan Z; Zhang J; Georgopoulos P; Wang SW; Ohman-Strickland P; Wu X; Zhu X; Harrington J; Tang X; Meng Q; Jung KH; Kwon J; Hernandez M; Bonnano L; Held J; Neal J;
    Res Rep Health Eff Inst; 2011 Aug; (160):3-127; discussion 129-51. PubMed ID: 22097188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Volatile organic compounds emission control in industrial pollution source using plasma technology coupled with F-TiO2/γ-Al2O3.
    Zhu T; Chen R; Xia N; Li X; He X; Zhao W; Carr T
    Environ Technol; 2015; 36(9-12):1405-13. PubMed ID: 25428439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Absorption of a volatile organic compound by a jet loop reactor with circulation of a surfactant solution: performance evaluation.
    Park B; Hwang G; Haam S; Lee C; Ahn IS; Lee K
    J Hazard Mater; 2008 May; 153(1-2):735-41. PubMed ID: 17936501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane process for biological treatment of contaminated gas streams.
    Ergas SJ; Shumway L; Fitch MW; Neemann JJ
    Biotechnol Bioeng; 1999 May; 63(4):431-41. PubMed ID: 10099623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Microwave-induced combustion of volatile organic compounds in an industrial flue gas over the magnetite fixed-bed.
    Lee BN; Ying WT; Shen YT
    Chemosphere; 2007 Nov; 69(11):1821-6. PubMed ID: 17767944
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferric sludge derived from the process of water purification as an efficient catalyst and/or support for the removal of volatile organic compounds.
    Sanchis R; Dejoz A; Vázquez I; Vilarrasa-García E; Jiménez-Jiménez J; Rodríguez-Castellón E; López Nieto JM; Solsona B
    Chemosphere; 2019 Mar; 219():286-295. PubMed ID: 30543964
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance characteristics of a regenerative catalytic oxidizer for treating VOC-contaminated airstreams.
    Chou MS; Cheng WH; Lee WS
    J Air Waste Manag Assoc; 2000 Dec; 50(12):2112-9. PubMed ID: 11140140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Organic liquids storage tanks volatile organic compounds (VOCS) emissions dispersion and risk assessment in developing countries: the case of Dar-es-Salaam City, Tanzania.
    Jackson MM
    Environ Monit Assess; 2006 May; 116(1-3):363-82. PubMed ID: 16779602
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Recent advances in the chemical oxidation of gaseous volatile organic compounds (VOCs) in liquid phase.
    Li C; He L; Yao X; Yao Z
    Chemosphere; 2022 May; 295():133868. PubMed ID: 35131275
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of catalytic oxidation of benzene, n-hexane, and emission gas from a refinery oil/water separator over a chromium oxide catalyst.
    Wang JB; Chou MS
    J Air Waste Manag Assoc; 2000 Feb; 50(2):227-33. PubMed ID: 10680352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.