These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
533 related articles for article (PubMed ID: 30469164)
1. The Sydney Triage to Admission Risk Tool (START2) using machine learning techniques to support disposition decision-making. Rendell K; Koprinska I; Kyme A; Ebker-White AA; Dinh MM Emerg Med Australas; 2019 Jun; 31(3):429-435. PubMed ID: 30469164 [TBL] [Abstract][Full Text] [Related]
2. Emergency department triage prediction of clinical outcomes using machine learning models. Raita Y; Goto T; Faridi MK; Brown DFM; Camargo CA; Hasegawa K Crit Care; 2019 Feb; 23(1):64. PubMed ID: 30795786 [TBL] [Abstract][Full Text] [Related]
3. The Sydney Triage to Admission Risk Tool (START) to predict Emergency Department Disposition: A derivation and internal validation study using retrospective state-wide data from New South Wales, Australia. Dinh MM; Russell SB; Bein KJ; Rogers K; Muscatello D; Paoloni R; Hayman J; Chalkley DR; Ivers R BMC Emerg Med; 2016 Dec; 16(1):46. PubMed ID: 27912757 [TBL] [Abstract][Full Text] [Related]
4. The Sydney Triage to Admission Risk Tool (START): A prospective validation study. Ebker-White AA; Bein KJ; Dinh MM Emerg Med Australas; 2018 Aug; 30(4):511-516. PubMed ID: 29417732 [TBL] [Abstract][Full Text] [Related]
5. A Machine Learning Approach to Predicting Need for Hospitalization for Pediatric Asthma Exacerbation at the Time of Emergency Department Triage. Patel SJ; Chamberlain DB; Chamberlain JM Acad Emerg Med; 2018 Dec; 25(12):1463-1470. PubMed ID: 30382605 [TBL] [Abstract][Full Text] [Related]
6. Machine Learning-Based Prediction of Clinical Outcomes for Children During Emergency Department Triage. Goto T; Camargo CA; Faridi MK; Freishtat RJ; Hasegawa K JAMA Netw Open; 2019 Jan; 2(1):e186937. PubMed ID: 30646206 [TBL] [Abstract][Full Text] [Related]
7. The effects of emergency department crowding on triage and hospital admission decisions. Chen W; Linthicum B; Argon NT; Bohrmann T; Lopiano K; Mehrotra A; Travers D; Ziya S Am J Emerg Med; 2020 Apr; 38(4):774-779. PubMed ID: 31288959 [TBL] [Abstract][Full Text] [Related]
8. Extending the Sydney Triage to Admission Risk Tool (START+) to predict discharges and short stay admissions. Ebker-White A; Bein KJ; Dinh MM Emerg Med J; 2018 Aug; 35(8):471-476. PubMed ID: 29914922 [TBL] [Abstract][Full Text] [Related]
9. Prediction of emergency department patient disposition decision for proactive resource allocation for admission. Lee SY; Chinnam RB; Dalkiran E; Krupp S; Nauss M Health Care Manag Sci; 2020 Sep; 23(3):339-359. PubMed ID: 31444660 [TBL] [Abstract][Full Text] [Related]
10. A universal deep learning approach for modeling the flow of patients under different severities. Jiang S; Chin KS; Tsui KL Comput Methods Programs Biomed; 2018 Feb; 154():191-203. PubMed ID: 29249343 [TBL] [Abstract][Full Text] [Related]
11. Prediction of hospitalization using artificial intelligence for urgent patients in the emergency department. Lee JT; Hsieh CC; Lin CH; Lin YJ; Kao CY Sci Rep; 2021 Sep; 11(1):19472. PubMed ID: 34593930 [TBL] [Abstract][Full Text] [Related]
12. Machine learning for developing a prediction model of hospital admission of emergency department patients: Hype or hope? De Hond A; Raven W; Schinkelshoek L; Gaakeer M; Ter Avest E; Sir O; Lameijer H; Hessels RA; Reijnen R; De Jonge E; Steyerberg E; Nickel CH; De Groot B Int J Med Inform; 2021 Aug; 152():104496. PubMed ID: 34020171 [TBL] [Abstract][Full Text] [Related]
13. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach. Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719 [TBL] [Abstract][Full Text] [Related]
14. Predicting hospital admission at emergency department triage using machine learning. Hong WS; Haimovich AD; Taylor RA PLoS One; 2018; 13(7):e0201016. PubMed ID: 30028888 [TBL] [Abstract][Full Text] [Related]
15. Machine learning models predict triage levels, massive transfusion protocol activation, and mortality in trauma utilizing patients hemodynamics on admission. El-Menyar A; Naduvilekandy M; Asim M; Rizoli S; Al-Thani H Comput Biol Med; 2024 Sep; 179():108880. PubMed ID: 39018880 [TBL] [Abstract][Full Text] [Related]
16. Prediction of bacteremia at the emergency department during triage and disposition stages using machine learning models. Choi DH; Hong KJ; Park JH; Shin SD; Ro YS; Song KJ; Kim KH; Kim S Am J Emerg Med; 2022 Mar; 53():86-93. PubMed ID: 34998038 [TBL] [Abstract][Full Text] [Related]
17. Prediction of admission in pediatric emergency department with deep neural networks and triage textual data. Roquette BP; Nagano H; Marujo EC; Maiorano AC Neural Netw; 2020 Jun; 126():170-177. PubMed ID: 32240912 [TBL] [Abstract][Full Text] [Related]
19. Predicting hospital admission for older emergency department patients: Insights from machine learning. Mowbray F; Zargoush M; Jones A; de Wit K; Costa A Int J Med Inform; 2020 Aug; 140():104163. PubMed ID: 32474393 [TBL] [Abstract][Full Text] [Related]
20. Early prediction of hospital admission for emergency department patients: a comparison between patients younger or older than 70 years. Lucke JA; de Gelder J; Clarijs F; Heringhaus C; de Craen AJM; Fogteloo AJ; Blauw GJ; Groot B; Mooijaart SP Emerg Med J; 2018 Jan; 35(1):18-27. PubMed ID: 28814479 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]