BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 30469382)

  • 1. Molecular and Cellular Functions of the Warsaw Breakage Syndrome DNA Helicase DDX11.
    Pisani FM; Napolitano E; Napolitano LMR; Onesti S
    Genes (Basel); 2018 Nov; 9(11):. PubMed ID: 30469382
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular functions and cellular roles of the ChlR1 (DDX11) helicase defective in the rare cohesinopathy Warsaw breakage syndrome.
    Bharti SK; Khan I; Banerjee T; Sommers JA; Wu Y; Brosh RM
    Cell Mol Life Sci; 2014 Jul; 71(14):2625-39. PubMed ID: 24487782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mapping of DDX11 genetic interactions defines sister chromatid cohesion as the major dependency.
    Amitzi L; Cozma E; Tong AHY; Chan K; Ross C; O'Neil N; Moffat J; Stirling P; Hieter P
    G3 (Bethesda); 2024 May; 14(5):. PubMed ID: 38478595
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Warsaw Breakage Syndrome associated DDX11 helicase resolves G-quadruplex structures to support sister chromatid cohesion.
    van Schie JJM; Faramarz A; Balk JA; Stewart GS; Cantelli E; Oostra AB; Rooimans MA; Parish JL; de Almeida Estéves C; Dumic K; Barisic I; Diderich KEM; van Slegtenhorst MA; Mahtab M; Pisani FM; Te Riele H; Ameziane N; Wolthuis RMF; de Lange J
    Nat Commun; 2020 Aug; 11(1):4287. PubMed ID: 32855419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA translocation mechanism of an XPD family helicase.
    Cheng K; Wigley DB
    Elife; 2018 Dec; 7():. PubMed ID: 30520735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The iron-sulfur helicase DDX11 promotes the generation of single-stranded DNA for CHK1 activation.
    Simon AK; Kummer S; Wild S; Lezaja A; Teloni F; Jozwiakowski SK; Altmeyer M; Gari K
    Life Sci Alliance; 2020 Mar; 3(3):. PubMed ID: 32071282
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-redundant roles in sister chromatid cohesion of the DNA helicase DDX11 and the SMC3 acetyl transferases ESCO1 and ESCO2.
    Faramarz A; Balk JA; van Schie JJM; Oostra AB; Ghandour CA; Rooimans MA; Wolthuis RMF; de Lange J
    PLoS One; 2020; 15(1):e0220348. PubMed ID: 31935221
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spotlight on Warsaw Breakage Syndrome.
    Pisani FM
    Appl Clin Genet; 2019; 12():239-248. PubMed ID: 31824187
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Upregulated
    Li J; Liu L; Liu X; Xu P; Hu Q; Yu Y
    J Cancer; 2019; 10(18):4208-4216. PubMed ID: 31413739
    [No Abstract]   [Full Text] [Related]  

  • 10. Genomic integrity and mitochondrial metabolism defects in Warsaw syndrome cells: a comparison with Fanconi anemia.
    Bottega R; Ravera S; Napolitano LMR; Chiappetta V; Zini N; Crescenzi B; Arniani S; Faleschini M; Cortone G; Faletra F; Medagli B; Sirchia F; Moretti M; de Lange J; Cappelli E; Mecucci C; Onesti S; Pisani FM; Savoia A
    J Cell Physiol; 2021 Aug; 236(8):5664-5675. PubMed ID: 33432587
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two further patients with Warsaw breakage syndrome. Is a mild phenotype possible?
    Bottega R; Napolitano LMR; Carbone A; Cappelli E; Corsolini F; Onesti S; Savoia A; Gasparini P; Faletra F
    Mol Genet Genomic Med; 2019 May; 7(5):e639. PubMed ID: 30924321
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Timeless couples G-quadruplex detection with processing by DDX11 helicase during DNA replication.
    Lerner LK; Holzer S; Kilkenny ML; Šviković S; Murat P; Schiavone D; Eldridge CB; Bittleston A; Maman JD; Branzei D; Stott K; Pellegrini L; Sale JE
    EMBO J; 2020 Sep; 39(18):e104185. PubMed ID: 32705708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mutations in DEAD/H-box helicase 11 correlate with increased relapse risk in adults with acute myeloid leukaemia with normal cytogenetics.
    Zhou YL; Zhao MY; Gale RP; Jiang H; Jiang Q; Liu LX; Qin JY; Cao SB; Lou F; Xu LP; Zhang XH; Huang XJ; Ruan GR
    Leukemia; 2024 Jan; 38(1):223-225. PubMed ID: 37993668
    [No Abstract]   [Full Text] [Related]  

  • 14. Exploring the G-quadruplex binding and unwinding activity of the bacterial FeS helicase DinG.
    De Piante E; D'Aria F; Napolitano LMR; Amato J; Pirrello S; Onesti S; Giancola C
    Sci Rep; 2023 Aug; 13(1):12610. PubMed ID: 37537265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emerging concepts involving inhibitory and activating RNA functionalization towards the understanding of microcephaly phenotypes and brain diseases in humans.
    Tokunaga M; Imamura T
    Front Cell Dev Biol; 2023; 11():1168072. PubMed ID: 37408531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pan-cancer surveys indicate cell cycle-related roles of primate-specific genes in tumors and embryonic cerebrum.
    Ma C; Li C; Ma H; Yu D; Zhang Y; Zhang D; Su T; Wu J; Wang X; Zhang L; Chen CL; Zhang YE
    Genome Biol; 2022 Dec; 23(1):251. PubMed ID: 36474250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Targeting chromosome trisomy for chromosome editing.
    Abe T; Suzuki Y; Ikeya T; Hirota K
    Sci Rep; 2021 Sep; 11(1):18054. PubMed ID: 34508128
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Vertebrate CTF18 and DDX11 essential function in cohesion is bypassed by preventing WAPL-mediated cohesin release.
    Kawasumi R; Abe T; Psakhye I; Miyata K; Hirota K; Branzei D
    Genes Dev; 2021 Oct; 35(19-20):1368-1382. PubMed ID: 34503989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Establishment of a Prognostic Model for Hepatocellular Carcinoma Based on Endoplasmic Reticulum Stress-Related Gene Analysis.
    Liu P; Wei J; Mao F; Xin Z; Duan H; Du Y; Wang X; Li Z; Qian J; Yao J
    Front Oncol; 2021; 11():641487. PubMed ID: 34094926
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.