These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 30469421)

  • 1. Comparison of Cohesive Models in EDEM and LIGGGHTS for Simulating Powder Compaction.
    Ramírez-Aragón C; Ordieres-Meré J; Alba-Elías F; González-Marcos A
    Materials (Basel); 2018 Nov; 11(11):. PubMed ID: 30469421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical Modeling for Simulation of Compaction of Refractory Materials for Secondary Steelmaking.
    Ramírez-Aragón C; Ordieres-Meré J; Alba-Elías F; González-Marcos A
    Materials (Basel); 2020 Jan; 13(1):. PubMed ID: 31947984
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Role of Roller Rotation Pattern in the Spreading Process of Polymer/Short-Fiber Composite Powder in Selective Laser Sintering.
    Cheng T; Chen H; Wei Q
    Polymers (Basel); 2022 Jun; 14(12):. PubMed ID: 35745919
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An extended discrete element method for the estimation of contact pressure at the ankle joint during stance phase.
    Benemerito I; Modenese L; Montefiori E; Mazzà C; Viceconti M; Lacroix D; Guo L
    Proc Inst Mech Eng H; 2020 May; 234(5):507-516. PubMed ID: 32036769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic compaction of cohesive granular materials: scaling behavior and bonding structures.
    Sonzogni M; Vanson JM; Ioannidou K; Reynier Y; Martinet S; Radjai F
    Soft Matter; 2024 Jul; 20(27):5296-5313. PubMed ID: 38602178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modeling of High-Density Compaction of Pharmaceutical Tablets Using Multi-Contact Discrete Element Method.
    Giannis K; Schilde C; Finke JH; Kwade A
    Pharmaceutics; 2021 Dec; 13(12):. PubMed ID: 34959475
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the fragmentation of brittle particles during compaction process by the acoustic emission technique.
    Favretto-Cristini N; Hégron L; Sornay P
    Ultrasonics; 2016 Apr; 67():178-189. PubMed ID: 26742631
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating Compaction by Intergranular Pressure Solution Using the Discrete Element Method.
    van den Ende MPA; Marketos G; Niemeijer AR; Spiers CJ
    J Geophys Res Solid Earth; 2018 Jan; 123(1):107-124. PubMed ID: 29541574
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DEM Modelling of Granule Rearrangement and Fracture Behaviours During a Closed-Die Compaction.
    Furukawa R; Kadota K; Noguchi T; Shimosaka A; Shirakawa Y
    AAPS PharmSciTech; 2017 Aug; 18(6):2368-2377. PubMed ID: 28127720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evolution of the microstructure during the process of consolidation and bonding in soft granular solids.
    Yohannes B; Gonzalez M; Abebe A; Sprockel O; Nikfar F; Kiang S; Cuitiño AM
    Int J Pharm; 2016 Apr; 503(1-2):68-77. PubMed ID: 26902721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation and clogging phenomena of rigid microparticles in microfluidics: Comparison of a discrete element method (DEM) and CFD-DEM coupling method.
    Shahzad K; Aeken WV; Mottaghi M; Kamyab VK; Kuhn S
    Microfluid Nanofluidics; 2018; 22(9):104. PubMed ID: 30393471
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic modeling of a capsule filling process.
    Loidolt P; Madlmeir S; Khinast JG
    Int J Pharm; 2017 Oct; 532(1):47-54. PubMed ID: 28870766
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrete Element Method Modelling of the Diametral Compression of Starch Agglomerates.
    Horabik J; Wiącek J; Parafiniuk P; Stasiak M; Bańda M; Kobyłka R; Molenda M
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32093133
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical estimation of punch velocities and displacements of single-punch and rotary tablet machines.
    Charlton B; Newton JM
    J Pharm Pharmacol; 1984 Oct; 36(10):645-51. PubMed ID: 6150079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DEM based computational model to predict moisture induced cohesion in pharmaceutical powders.
    Mukherjee R; Mao C; Chattoraj S; Chaudhuri B
    Int J Pharm; 2018 Jan; 536(1):301-309. PubMed ID: 29217469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation des mécanismes de liaison impliqués dans la cohésion des compacts a usage cosmétique.
    Kompaoré F; Ponchel G; Boelle A; Duchene D
    Int J Cosmet Sci; 1987 Dec; 9(6):269-78. PubMed ID: 19457014
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Effect of Particle Shape on the Compaction of Realistic Non-Spherical Particles-A Multi-Contact DEM Study.
    Giannis K; Kwade A; Finke JH; Schilde C
    Pharmaceutics; 2023 Mar; 15(3):. PubMed ID: 36986770
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force Transmission Modes of Non-Cohesive and Cohesive Materials at the Critical State.
    Wang JP
    Materials (Basel); 2017 Aug; 10(9):. PubMed ID: 28858238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size and Structure of Clusters Formed by Shear Induced Coagulation: Modeling by Discrete Element Method.
    Kroupa M; Vonka M; Soos M; Kosek J
    Langmuir; 2015 Jul; 31(28):7727-37. PubMed ID: 26101888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Powder properties and compaction parameters that influence punch sticking propensity of pharmaceuticals.
    Paul S; Taylor LJ; Murphy B; Krzyzaniak JF; Dawson N; Mullarney MP; Meenan P; Sun CC
    Int J Pharm; 2017 Apr; 521(1-2):374-383. PubMed ID: 28232264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.