BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 3046945)

  • 1. ATP-induced activation of the aminoacylation of tRNA by the isoleucyl-tRNA synthetase from Escherichia coli.
    Airas RK
    Eur J Biochem; 1988 Sep; 176(2):359-63. PubMed ID: 3046945
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isoleucyl-tRNA synthetase from Escherichia coli MRE 600. Different pathways of the aminoacylation reaction depending on presence of pyrophosphatase, order of substrate addition in the pyrophosphate exchange, and substrate specificity with regard to ATP analogs.
    Freist W; Sternbach H; Cramer F
    Eur J Biochem; 1982 Nov; 128(2-3):315-29. PubMed ID: 6129973
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of aminoacylation of tRNA. Proof of the aminoacyl adenylate pathway for the isoleucyl- and tyrosyl-tRNA synthetases from Escherichia coli K12.
    Fersht AR; Kaethner MM
    Biochemistry; 1976 Feb; 15(4):818-23. PubMed ID: 764868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influences of amino acid, ATP, pyrophosphate and tRNA on binding of aminoalkyl adenylates to isoleucyl-tRNA synthetase from Escherichia coli MRE 600.
    Flossdorf J; Marutzky R; Kula MR
    Nucleic Acids Res; 1977 Jul; 4(7):2455-66. PubMed ID: 198742
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Isoleucyl transfer ribonucleic acid synthetase. Steady-state kinetic analysis.
    Moe JG; Piszkiewicz D
    Biochemistry; 1979 Jun; 18(13):2804-10. PubMed ID: 383140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aminoacyl transfer RNA formation. VII. Lack of correlation between aminoacylation and PPi-ATP exchange catalyzed by isoleucyl-tRNA synthetase of Escherichia coli in the presence of various divalent cations.
    Takeda Y; Ohnishi T; Ogiso Y
    J Biochem; 1976 Sep; 80(3):471-5. PubMed ID: 185200
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the isoleucyl-tRNA synthetase reaction by total rate equations. Magnesium and spermidine in the tRNA kinetics.
    Airas RK
    Eur J Biochem; 1992 Dec; 210(2):443-50. PubMed ID: 1459129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The mechanism of aminoacylation of transfer ribonucleic acid. Reactivity of enzyme-bound isoleucyl adenylate.
    Lõvgren TN; Heinonen J; Loftfield RB
    J Biol Chem; 1975 May; 250(10):3854-60. PubMed ID: 1092679
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the roles of magnesium and spermidine in the isoleucyl-tRNA synthetase reaction. Analysis of the reaction mechanism by total rate equations.
    Airas RK
    Eur J Biochem; 1990 Sep; 192(2):401-9. PubMed ID: 2209594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interacting binding sites of isoleucyl-tRNA synthetase from Escherichia coli studied by equilibrium partition.
    Hustedt H; Flossdorf J; Kula MR
    Eur J Biochem; 1977 Mar; 74(1):199-202. PubMed ID: 323007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Valyl-tRNA, isoleucyl-tRNA and tyrosyl-tRNA synthetase from baker's yeast. Substrate specificity with regard to ATP analogs and mechanism of the aminoacylation reaction.
    Freist W; von der Haar F; Faulhammer H; Cramer F
    Eur J Biochem; 1976 Jul; 66(3):493-7. PubMed ID: 782885
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aminoacyl transfer RNA formation. V. Effect of ethylenediaminetetraacetate on isoleucyl transfer RNA formation stimulated by either spermine or Mg2+.
    Takeda Y; Onishi T
    J Biol Chem; 1975 May; 250(10):3878-82. PubMed ID: 805133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoleucyl-tRNA synthetase from Baker's yeast. Action of ATP analogs in pyrophosphate exchange and aminoacylation, two pathways of the aminoacylation depending on concentration of pyrophosphate.
    Freist W; von der Haar F; Cramer F
    Eur J Biochem; 1981 Sep; 119(1):151-64. PubMed ID: 6281001
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differences in the magnesium dependences of the class I and class II aminoacyl-tRNA synthetases from Escherichia coli.
    Airas RK
    Eur J Biochem; 1996 Aug; 240(1):223-31. PubMed ID: 8797857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modification of L-isoleucyl-tRNA synthetase with L-isoleucyl-bromomethyl ketone. The effect of the catalytic steps.
    Rainey P; Hammer-Raber B; Kula MR; Holler E
    Eur J Biochem; 1977 Aug; 78(1):239-49. PubMed ID: 334533
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental evidence for kinetic proofreading in the aminoacylation of tRNA by synthetase.
    Yamane T; Hopfield JJ
    Proc Natl Acad Sci U S A; 1977 Jun; 74(6):2246-50. PubMed ID: 329276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catalytic mechanism of isoleucyl-tRNA synthetase of Escherichia coli K10. Effect of pH and chemical modification.
    Holler E; Schwarze G; Scheibl R; Hammer-Raber B
    Biochemistry; 1980 Nov; 19(23):5403-11. PubMed ID: 7004486
    [No Abstract]   [Full Text] [Related]  

  • 18. Editing mechanisms in protein synthesis. Rejection of valine by the isoleucyl-tRNA synthetase.
    Fersht AR
    Biochemistry; 1977 Mar; 16(5):1025-30. PubMed ID: 321008
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of polyamines in the aminoacyl transfer ribonucleic acid synthetase reactions. Demonstration of the requirement for magnesium ion and a secondary stimulatory effect of spermine.
    Santi DV; Webster RW
    J Biol Chem; 1975 May; 250(10):3874-7. PubMed ID: 165187
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isoleucyl-tRNA synthetase from Escherichia coli MRE 600: discrimination between isoleucine and valine with modulated accuracy.
    Freist W; Cramer F
    Biol Chem Hoppe Seyler; 1987 Mar; 368(3):229-37. PubMed ID: 3297096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.