These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30469580)

  • 1. High-birefringence direct UV-written waveguides for use as heralded single-photon sources at telecommunication wavelengths.
    Posner MT; Hiemstra T; Mennea PL; Bannerman RHS; Hoff UB; Eckstein A; Steven Kolthammer W; Walmsley IA; Smith DH; Gates JC; Smith PGR
    Opt Express; 2018 Sep; 26(19):24678-24686. PubMed ID: 30469580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Near-ideal spontaneous photon sources in silicon quantum photonics.
    Paesani S; Borghi M; Signorini S; Maïnos A; Pavesi L; Laing A
    Nat Commun; 2020 May; 11(1):2505. PubMed ID: 32427911
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectrally pure heralded single photons by spontaneous four-wave mixing in a fiber: reducing impact of dispersion fluctuations.
    Koefoed JG; Friis SMM; Christensen JB; Rottwitt K
    Opt Express; 2017 Aug; 25(17):20835-20849. PubMed ID: 29041761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source.
    Fulconis J; Alibart O; O'Brien JL; Wadsworth WJ; Rarity JG
    Phys Rev Lett; 2007 Sep; 99(12):120501. PubMed ID: 17930484
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pulsed source of spectrally uncorrelated and indistinguishable photons at telecom wavelengths.
    Bruno N; Martin A; Guerreiro T; Sanguinetti B; Thew RT
    Opt Express; 2014 Jul; 22(14):17246-53. PubMed ID: 25090538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two-photon interferences on a silica-on-silicon chip with telecom-band photon pairs generated in a fiber.
    Li XY; Zhu F; Qin L; Zhang JS; Ren MZ; An JM; Zhang W; You LX; Wang Z; Xu XS
    Opt Express; 2018 Oct; 26(22):29471-29481. PubMed ID: 30470110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microstructured fiber source of photon pairs at widely separated wavelengths.
    Slater JA; Corbeil JS; Virally S; Bussières F; Kudlinski A; Bouwmans G; Lacroix S; Godbout N; Tittel W
    Opt Lett; 2010 Feb; 35(4):499-501. PubMed ID: 20160797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Widely tunable, efficient on-chip single photon sources at telecommunication wavelengths.
    Hoang TB; Beetz J; Lermer M; Midolo L; Kamp M; Höfling S; Fiore A
    Opt Express; 2012 Sep; 20(19):21758-65. PubMed ID: 23037295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 1.5 μm polarization entanglement generation based on birefringence in silicon wire waveguides.
    Lv N; Zhang W; Guo Y; Zhou Q; Huang Y; Peng J
    Opt Lett; 2013 Aug; 38(15):2873-6. PubMed ID: 23903167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On-chip generation and demultiplexing of quantum correlated photons using a silicon-silica monolithic photonic integration platform.
    Matsuda N; Karkus P; Nishi H; Tsuchizawa T; Munro WJ; Takesue H; Yamada K
    Opt Express; 2014 Sep; 22(19):22831-40. PubMed ID: 25321753
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of correlated photons in nanoscale silicon waveguides.
    Sharping JE; Lee KF; Foster MA; Turner AC; Schmidt BS; Lipson M; Gaeta AL; Kumar P
    Opt Express; 2006 Dec; 14(25):12388-93. PubMed ID: 19529670
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entanglement generation using silicon photonic wire waveguide.
    Takesue H; Harada K; Fukuda H; Tsuchizawa T; Watanabe T; Yamada K; Tokura Y; Itabashi S
    J Nanosci Nanotechnol; 2010 Mar; 10(3):1814-8. PubMed ID: 20355579
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectrally pure photons generated in a quasi-phase matched xenon-filled hollow-core photonic crystal fiber.
    Larson W; Courtney TL; Keyser C
    Opt Express; 2022 Feb; 30(4):5739-5757. PubMed ID: 35209530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ion-exchanged glass waveguides with low birefringence for a broad range of waveguide widths.
    Yliniemi S; West BR; Honkanen S
    Appl Opt; 2005 Jun; 44(16):3358-63. PubMed ID: 15943272
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AlGaAs-on-insulator waveguide for highly efficient photon-pair generation via spontaneous four-wave mixing.
    Mahmudlu H; May S; Angulo A; Sorel M; Kues M
    Opt Lett; 2021 Mar; 46(5):1061-1064. PubMed ID: 33649657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancing the heralded single-photon rate from a silicon nanowire by time and wavelength division multiplexing pump pulses.
    Zhang X; Jizan I; He J; Clark AS; Choi DY; Chae CJ; Eggleton BJ; Xiong C
    Opt Lett; 2015 Jun; 40(11):2489-92. PubMed ID: 26030539
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid laser written waveguides in fused silica for low loss and polarization independence.
    Guan J; Liu X; Salter PS; Booth MJ
    Opt Express; 2017 Mar; 25(5):4845-4859. PubMed ID: 28380753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Highly efficient heralded single-photon source for telecom wavelengths based on a PPLN waveguide.
    Bock M; Lenhard A; Chunnilall C; Becher C
    Opt Express; 2016 Oct; 24(21):23992-24001. PubMed ID: 27828232
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coherence and entanglement preservation of frequency-converted heralded single photons.
    Lenhard A; Brito J; Bock M; Becher C; Eschner J
    Opt Express; 2017 May; 25(10):11187-11199. PubMed ID: 28788799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Compact titanium dioxide waveguides with high nonlinearity at telecommunication wavelengths.
    Guan X; Hu H; Oxenløwe LK; Frandsen LH
    Opt Express; 2018 Jan; 26(2):1055-1063. PubMed ID: 29401978
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.