These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

331 related articles for article (PubMed ID: 30469597)

  • 1. Off-axis virtual-image display and camera by holographic mirror and blur compensation.
    Nakamura T; Kimura S; Takahashi K; Aburakawa Y; Takahashi S; Igarashi S; Torashima S; Yamaguchi M
    Opt Express; 2018 Sep; 26(19):24864-24880. PubMed ID: 30469597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of a three-dimensional color-video of a point-cloud object using the projection-type holographic display with a holographic optical element.
    Amano H; Ichihashi Y; Kakue T; Wakunami K; Hashimoto H; Miura R; Shimobaba T; Ito T
    Opt Express; 2020 Feb; 28(4):5692-5705. PubMed ID: 32121785
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual image determination for mirrored surfaces.
    Radel JC; Belanger-Garnier V; Hegedus MP
    Opt Express; 2018 Feb; 26(3):2599-2612. PubMed ID: 29401797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Holographic display for see-through augmented reality using mirror-lens holographic optical element.
    Li G; Lee D; Jeong Y; Cho J; Lee B
    Opt Lett; 2016 Jun; 41(11):2486-9. PubMed ID: 27244395
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical rotation compensation for a holographic 3D display with a 360 degree horizontal viewing zone.
    Sando Y; Barada D; Yatagai T
    Appl Opt; 2016 Oct; 55(30):8589-8595. PubMed ID: 27828140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motion-Blur-Free High-Speed Video Shooting Using a Resonant Mirror.
    Inoue M; Gu Q; Jiang M; Takaki T; Ishii I; Tajima K
    Sensors (Basel); 2017 Oct; 17(11):. PubMed ID: 29109385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On-axis near-eye display system based on directional scattering holographic waveguide and curved goggle.
    Xiao J; Liu J; Lv Z; Shi X; Han J
    Opt Express; 2019 Jan; 27(2):1683-1692. PubMed ID: 30696230
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Compensating optical systems. Part 1: broadband holographic reconstruction.
    Katyl RH
    Appl Opt; 1972 May; 11(5):1241-7. PubMed ID: 20119123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compact full-color augmented reality near-eye display using freeform optics and a holographic optical combiner.
    Shu T; Hu G; Wu R; Li H; Zhang Z; Liu X
    Opt Express; 2022 Aug; 30(18):31714-31727. PubMed ID: 36242248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Projection-type see-through holographic three-dimensional display.
    Wakunami K; Hsieh PY; Oi R; Senoh T; Sasaki H; Ichihashi Y; Okui M; Huang YP; Yamamoto K
    Nat Commun; 2016 Oct; 7():12954. PubMed ID: 27694975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visual inspection of 3-D surface and refractive-index profiles of microscopic lenses using a single-arm off-axis holographic interferometer.
    Kim BM; Kim ES
    Opt Express; 2016 May; 24(10):10326-44. PubMed ID: 27409857
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uniformity improvement of a reconstructed-holographic image in a near-eye display system using off-axis HOE.
    Hwang L; Hur G; Kim J; Gentet P; Kwon S; Lee S
    Opt Express; 2022 Jun; 30(12):21439-21454. PubMed ID: 36224863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pre-compensation of an image blur in holographic projection display using light emitting diode light source.
    Askari M; Park JH
    Opt Express; 2020 Jan; 28(1):146-159. PubMed ID: 32118946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. See-through display combined with holographic display and Maxwellian display using switchable holographic optical element based on liquid lens.
    Lee JS; Kim YK; Won YH
    Opt Express; 2018 Jul; 26(15):19341-19355. PubMed ID: 30114109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unmixing of the background components in an off-axis holographic-mirror-based imaging system using spectral image processing.
    Matsui F; Watanabe F; Nakamura T; Yamaguchi M
    Opt Express; 2020 Dec; 28(26):39998-40012. PubMed ID: 33379536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 360-degree tabletop electronic holographic display.
    Lim Y; Hong K; Kim H; Kim HE; Chang EY; Lee S; Kim T; Nam J; Choo HG; Kim J; Hahn J
    Opt Express; 2016 Oct; 24(22):24999-25009. PubMed ID: 27828440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical see-through Maxwellian near-to-eye display with an enlarged eyebox.
    Kim SB; Park JH
    Opt Lett; 2018 Feb; 43(4):767-770. PubMed ID: 29443989
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control Design and Digital Implementation of a Fast 2-Degree-of-Freedom Translational Optical Image Stabilizer for Image Sensors in Mobile Camera Phones.
    Wang JH; Qiu KF; Chao PC
    Sensors (Basel); 2017 Oct; 17(10):. PubMed ID: 29027950
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Incoherent off-axis Fourier triangular color holography.
    Wan Y; Man T; Wang D
    Opt Express; 2014 Apr; 22(7):8565-73. PubMed ID: 24718228
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-shot off-axis digital holographic system with extended field-of-view by using multiplexing method.
    Kumar M; Pensia L; Kumar R
    Sci Rep; 2022 Sep; 12(1):16462. PubMed ID: 36180504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.