These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 30469612)
1. Efficient volumetric method of moments for modeling plasmonic thin-film solar cells with periodic structures. He Z; Gu JH; Sha WEI; Chen RS Opt Express; 2018 Sep; 26(19):25037-25046. PubMed ID: 30469612 [TBL] [Abstract][Full Text] [Related]
2. Plasmonic Effect of Gold Nanostars in Highly Efficient Organic and Perovskite Solar Cells. Ginting RT; Kaur S; Lim DK; Kim JM; Lee JH; Lee SH; Kang JW ACS Appl Mater Interfaces; 2017 Oct; 9(41):36111-36118. PubMed ID: 28937203 [TBL] [Abstract][Full Text] [Related]
3. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model. Kim RS; Zhu J; Park JH; Li L; Yu Z; Shen H; Xue M; Wang KL; Park G; Anderson TJ; Pei Q Opt Express; 2012 Jun; 20(12):12649-57. PubMed ID: 22714293 [TBL] [Abstract][Full Text] [Related]
4. High Efficiency Organic Solar Cells Achieved by the Simultaneous Plasmon-Optical and Plasmon-Electrical Effects from Plasmonic Asymmetric Modes of Gold Nanostars. Ren X; Cheng J; Zhang S; Li X; Rao T; Huo L; Hou J; Choy WC Small; 2016 Oct; 12(37):5200-5207. PubMed ID: 27487460 [TBL] [Abstract][Full Text] [Related]
5. Influence of Gold-Silver Rough-Surface Nanoparticles on Plasmonic Light Scattering in Organic Solar Cells. Tran QN; Lee HK; Kim JH; Park SJ J Nanosci Nanotechnol; 2020 Jan; 20(1):304-311. PubMed ID: 31383171 [TBL] [Abstract][Full Text] [Related]
6. Light trapping limits in plasmonic solar cells: an analytical investigation. Sheng X; Hu J; Michel J; Kimerling LC Opt Express; 2012 Jul; 20 Suppl 4():A496-501. PubMed ID: 22828618 [TBL] [Abstract][Full Text] [Related]
7. Solid-State Plasmonic Solar Cells. Ueno K; Oshikiri T; Sun Q; Shi X; Misawa H Chem Rev; 2018 Mar; 118(6):2955-2993. PubMed ID: 28737382 [TBL] [Abstract][Full Text] [Related]
8. Plasmonic enhancement of photovoltaic characteristics of organic solar cells by employing parabola nanostructures at the back of the solar cell. Das PK; Dhawan A RSC Adv; 2023 Sep; 13(38):26780-26792. PubMed ID: 37681038 [TBL] [Abstract][Full Text] [Related]
9. Toward omnidirectional light absorption by plasmonic effect for high-efficiency flexible nonvacuum Cu(In,Ga)Se2 thin film solar cells. Chen SC; Chen YJ; Chen WT; Yen YT; Kao TS; Chuang TY; Liao YK; Wu KH; Yabushita A; Hsieh TP; Charlton MD; Tsai DP; Kuo HC; Chueh YL ACS Nano; 2014 Sep; 8(9):9341-8. PubMed ID: 25093682 [TBL] [Abstract][Full Text] [Related]
10. Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell. Ren W; Zhang G; Wu Y; Ding H; Shen Q; Zhang K; Li J; Pan N; Wang X Opt Express; 2011 Dec; 19(27):26536-50. PubMed ID: 22274238 [TBL] [Abstract][Full Text] [Related]
11. Modeling plasmonic scattering combined with thin-film optics. Schmid M; Klenk R; Lux-Steiner MCh; Topic M; Krc J Nanotechnology; 2011 Jan; 22(2):025204. PubMed ID: 21135483 [TBL] [Abstract][Full Text] [Related]
12. Engineered optical properties of silver-aluminum alloy nanoparticles embedded in SiON matrix for maximizing light confinement in plasmonic silicon solar cells. Parashar PK; Komarala VK Sci Rep; 2017 Oct; 7(1):12520. PubMed ID: 28970541 [TBL] [Abstract][Full Text] [Related]
13. Multiscale Modeling of Plasmon-Enhanced Power Conversion Efficiency in Nanostructured Solar Cells. Meng L; Yam C; Zhang Y; Wang R; Chen G J Phys Chem Lett; 2015 Nov; 6(21):4410-6. PubMed ID: 26722976 [TBL] [Abstract][Full Text] [Related]
14. Design of nanostructured plasmonic back contacts for thin-film silicon solar cells. Paetzold UW; Moulin E; Pieters BE; Carius R; Rau U Opt Express; 2011 Nov; 19 Suppl 6():A1219-30. PubMed ID: 22109618 [TBL] [Abstract][Full Text] [Related]
15. Au@Ag core-shell nanocubes for efficient plasmonic light scattering effect in low bandgap organic solar cells. Baek SW; Park G; Noh J; Cho C; Lee CH; Seo MK; Song H; Lee JY ACS Nano; 2014 Apr; 8(4):3302-12. PubMed ID: 24593128 [TBL] [Abstract][Full Text] [Related]
16. A Simple Optical Model Well Explains Plasmonic-Nanoparticle-Enhanced Spectral Photocurrent in Optically Thin Solar Cells. Tanabe K Nanoscale Res Lett; 2016 Dec; 11(1):236. PubMed ID: 27142874 [TBL] [Abstract][Full Text] [Related]
17. Synergistic Effects of Localized Surface Plasmon Resonance, Surface Plasmon Polariton, and Waveguide Plasmonic Resonance on the Same Material: A Promising Hypothesis to Enhance Organic Solar Cell Efficiency. Ibrahim Zamkoye I; Lucas B; Vedraine S Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570526 [TBL] [Abstract][Full Text] [Related]
18. Study on spontaneous emission in complex multilayered plasmonic system via surface integral equation approach with layered medium Green's function. Chen YP; Sha WE; Choy WC; Jiang L; Chew WC Opt Express; 2012 Aug; 20(18):20210-21. PubMed ID: 23037073 [TBL] [Abstract][Full Text] [Related]
19. Detailed balance analysis of plasmonic metamaterial perovskite solar cells. Kim K; Lee S Opt Express; 2019 Aug; 27(16):A1241-A1260. PubMed ID: 31510517 [TBL] [Abstract][Full Text] [Related]
20. Spatial distribution of absorption in plasmonic thin film solar cells. Chao CC; Wang CM; Chang JY Opt Express; 2010 May; 18(11):11763-71. PubMed ID: 20589037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]