BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 30469627)

  • 21. Compressive spectral imaging approach using adaptive coded apertures.
    Zhang H; Ma X; Arce GR
    Appl Opt; 2020 Mar; 59(7):1924-1938. PubMed ID: 32225709
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Developing an optimum computer-designed multispectral system comprising a monochrome CCD camera and a liquid-crystal tunable filter.
    López-Alvarez MA; Hernández-Andrés J; Romero J
    Appl Opt; 2008 Aug; 47(24):4381-90. PubMed ID: 18716643
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Compressive single-pixel hyperspectral imaging using RGB sensors.
    Tao C; Zhu H; Wang X; Zheng S; Xie Q; Wang C; Wu R; Zheng Z
    Opt Express; 2021 Mar; 29(7):11207-11220. PubMed ID: 33820238
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Observation of and research on intravital microcirculation use of orthogonal polarization multi-spectral technique].
    Xu Q; Lei JF; Zeng LB
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Jul; 30(7):1886-9. PubMed ID: 20827992
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Along-track scanning using a liquid crystal compressive hyperspectral imager.
    Oiknine Y; August I; Stern A
    Opt Express; 2016 Apr; 24(8):8446-57. PubMed ID: 27137283
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hyperspectral Fluorescence LIDAR Based on a Liquid Crystal Tunable Filter for Marine Environment Monitoring.
    Aruffo E; Chiuri A; Angelini F; Artuso F; Cataldi D; Colao F; Fiorani L; Menicucci I; Nuvoli M; Pistilli M; Spizzichino V; Palucci A
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31940781
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hyperspectral full polarization imaging system based on spatial modulation.
    Zhang L; Yang Y; Zhao S; Chen T; Yu K; Wang K; Xie C; Wang M; Cai B
    Appl Opt; 2023 Feb; 62(5):1428-1435. PubMed ID: 36821248
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spectral characterization of near-infrared acousto-optic tunable filter (AOTF) hyperspectral imaging systems using standard calibration materials.
    Bürmen M; Pernuš F; Likar B
    Appl Spectrosc; 2011 Apr; 65(4):393-401. PubMed ID: 21396186
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Temporal Colored Coded Aperture Design in Compressive Spectral Video Sensing.
    Leon Lopez KM; Galvis Carreno LV; Arguello Fuentes H
    IEEE Trans Image Process; 2019 Jan; 28(1):253-264. PubMed ID: 30183626
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fast Hyperspectral Image Recovery of Dual-Camera Compressive Hyperspectral Imaging via Non-Iterative Subspace-Based Fusion.
    He W; Yokoya N; Yuan X
    IEEE Trans Image Process; 2021; 30():7170-7183. PubMed ID: 34370666
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Spectral calibration of hyperspectral imager based on spectral absorption target].
    Gou ZY; Yan L; Chen W; Zhao HY; Yin ZY; Duan YN
    Guang Pu Xue Yu Guang Pu Fen Xi; 2013 Feb; 33(2):571-4. PubMed ID: 23697157
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatiotemporal blue noise coded aperture design for multi-shot compressive spectral imaging.
    Correa CV; Arguello H; Arce GR
    J Opt Soc Am A Opt Image Sci Vis; 2016 Dec; 33(12):2312-2322. PubMed ID: 27906259
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-resolution spectral imaging based on coded dispersion.
    Lin Y; Shi G; Gao D; Liu D
    Appl Opt; 2013 Feb; 52(5):1041-8. PubMed ID: 23400066
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Biosensors technologies: acousto-optic tunable filter-based hyperspectral and polarization imagers for fluorescence and spectroscopic imaging.
    Gupta N
    Methods Mol Biol; 2009; 503():293-305. PubMed ID: 19151948
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Compressive spectral imaging with diffractive lenses.
    Kar OF; Oktem FS
    Opt Lett; 2019 Sep; 44(18):4582-4585. PubMed ID: 31517936
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Research and Application of Several Key Techniques in Hyperspectral Image Preprocessing.
    Li YH; Tan X; Zhang W; Jiao QB; Xu YX; Li H; Zou YB; Yang L; Fang YP
    Front Plant Sci; 2021; 12():627865. PubMed ID: 33679841
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Joint segmentation and reconstruction of hyperspectral data with compressed measurements.
    Zhang Q; Plemmons R; Kittle D; Brady D; Prasad S
    Appl Opt; 2011 Aug; 50(22):4417-35. PubMed ID: 21833118
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Compressive Sensing Hyperspectral Imaging by Spectral Multiplexing with Liquid Crystal.
    Oiknine Y; August I; Farber V; Gedalin D; Stern A
    J Imaging; 2018 Dec; 5(1):. PubMed ID: 34470182
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dual-Channel Switchable Metasurface Filters for Compact Spectral Imaging with Deep Compressive Reconstruction.
    Wang C; Liu X; Zhang Y; Sun Y; Yu Z; Zheng Z
    Nanomaterials (Basel); 2023 Oct; 13(21):. PubMed ID: 37947699
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spectral Clustering Super-Resolution Imaging Based on Multispectral Camera Array.
    Huang F; Chen Y; Wang X; Wang S; Wu X
    IEEE Trans Image Process; 2023; 32():1257-1271. PubMed ID: 37022799
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.