These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

721 related articles for article (PubMed ID: 30469656)

  • 1. Polarization-independent and angle-insensitive broadband absorber with a target-patterned graphene layer in the terahertz regime.
    Huang X; He W; Yang F; Ran J; Gao B; Zhang WL
    Opt Express; 2018 Oct; 26(20):25558-25566. PubMed ID: 30469656
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Broadband absorber with periodically sinusoidally-patterned graphene layer in terahertz range.
    Ye L; Chen Y; Cai G; Liu N; Zhu J; Song Z; Liu QH
    Opt Express; 2017 May; 25(10):11223-11232. PubMed ID: 28788804
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Polarization-Insensitive and Wide-Angle Terahertz Absorber with Ring-Porous Patterned Graphene Metasurface.
    Shen H; Liu F; Liu C; Zeng D; Guo B; Wei Z; Wang F; Tan C; Huang X; Meng H
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32707727
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrically Tunable Broadband Terahertz Absorption with Hybrid-Patterned Graphene Metasurfaces.
    Ye L; Chen X; Cai G; Zhu J; Liu N; Liu QH
    Nanomaterials (Basel); 2018 Jul; 8(8):. PubMed ID: 30042289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Switchable and tunable terahertz metamaterial absorber with broadband and multi-band absorption.
    Zhu H; Zhang Y; Ye L; Li Y; Xu Y; Xu R
    Opt Express; 2020 Dec; 28(26):38626-38637. PubMed ID: 33379429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Broadband Tunable Terahertz Metamaterial Absorber Based on Single-Layer Complementary Gammadion-Shaped Graphene.
    Chen F; Cheng Y; Luo H
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32075066
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metamaterial absorber with independently tunable amplitude and frequency in the terahertz regime.
    Huang X; Yang F; Gao B; Yang Q; Wu J; He W
    Opt Express; 2019 Sep; 27(18):25902-25911. PubMed ID: 31510452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable polarization-independent and angle-insensitive broadband terahertz absorber with graphene metamaterials.
    Feng H; Xu Z; Li K; Wang M; Xie W; Luo Q; Chen B; Kong W; Yun M
    Opt Express; 2021 Mar; 29(5):7158-7167. PubMed ID: 33726222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a Tunable Ultra-Broadband Terahertz Absorber Based on Multiple Layers of Graphene Ribbons.
    Xu Z; Wu D; Liu Y; Liu C; Yu Z; Yu L; Ye H
    Nanoscale Res Lett; 2018 May; 13(1):143. PubMed ID: 29744682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tunable broadband terahertz absorber based on a single-layer graphene metasurface.
    Han J; Chen R
    Opt Express; 2020 Sep; 28(20):30289-30298. PubMed ID: 33114911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarization-Insensitive Broadband THz Absorber Based on Circular Graphene Patches.
    Qian J; Zhou J; Zhu Z; Ge Z; Wu S; Liu X; Yi J
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685150
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene.
    Huang ML; Cheng YZ; Cheng ZZ; Chen HR; Mao XS; Gong RZ
    Materials (Basel); 2018 Mar; 11(4):. PubMed ID: 29614736
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A dual ultra-broadband switchable high-performance terahertz absorber based on hybrid graphene and vanadium dioxide.
    Chen W; Li C; Wang D; Gao S; Zhang C; Guo H; An W; Guo S; Wu G
    Phys Chem Chem Phys; 2023 Aug; 25(30):20414-20421. PubMed ID: 37466116
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable Broadband-Narrowband and Dual-Broadband Terahertz Absorber Based on a Hybrid Metamaterial Vanadium Dioxide and Graphene.
    Li J; Liu Y; Chen Y; Chen W; Guo H; Wu Q; Li M
    Micromachines (Basel); 2023 Jan; 14(1):. PubMed ID: 36677262
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual-controlled broadband terahertz absorber based on graphene and Dirac semimetal.
    Xiong H; Ji Q; Bashir T; Yang F
    Opt Express; 2020 Apr; 28(9):13884-13894. PubMed ID: 32403854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical Investigation of Graphene and STO Based Tunable Terahertz Absorber with Switchable Bifunctionality of Broadband and Narrowband Absorption.
    Liu Y; Huang R; Ouyang Z
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wide Angle of Incidence-Insensitive Polarization-Independent THz Metamaterial Absorber for Both TE and TM Mode Based on Plasmon Hybridizations.
    Huang XT; Lu CH; Rong CC; Wang SM; Liu MH
    Materials (Basel); 2018 Apr; 11(5):. PubMed ID: 29693645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tunable broadband all-silicon terahertz absorber based on a simple metamaterial structure.
    Lang T; Shen T; Wang G; Shen C
    Appl Opt; 2020 Jul; 59(21):6265-6270. PubMed ID: 32749287
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable terahertz metamaterial absorber based on Dirac semimetal films.
    Wang T; Cao M; Zhang H; Zhang Y
    Appl Opt; 2018 Nov; 57(32):9555-9561. PubMed ID: 30461735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Broadband terahertz absorber with tunable frequency and bandwidth by using Dirac semimetal and strontium titanate.
    Wu T; Shao Y; Ma S; Wang G; Gao Y
    Opt Express; 2021 Mar; 29(5):7713-7723. PubMed ID: 33726267
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 37.