These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30469664)

  • 1. Insulator to metal transition induced by surface plasmon polaritons in VO
    Madaras SE; Creeden J; Kittiwatanakul S; Lu J; Novikova I; Lukaszew RA
    Opt Express; 2018 Oct; 26(20):25657-25666. PubMed ID: 30469664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface plasmon resonance modulation in nanopatterned Au gratings by the insulator-metal transition in vanadium dioxide films.
    Beebe M; Wang L; Madaras SE; Klopf JM; Li Z; Brantley D; Heimburger M; Wincheski RA; Kittiwatanakul S; Lu J; Wolf SA; Lukaszew RA
    Opt Express; 2015 May; 23(10):13222-9. PubMed ID: 26074574
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface plasmon polaritons in VO2 thin films for tunable low-loss plasmonic applications.
    Wang L; Radue E; Kittiwatanakul S; Clavero C; Lu J; Wolf SA; Novikova I; Lukaszew RA
    Opt Lett; 2012 Oct; 37(20):4335-7. PubMed ID: 23073454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Active directional switching of surface plasmon polaritons using a phase transition material.
    Kim SJ; Yun H; Park K; Hong J; Yun JG; Lee K; Kim J; Jeong SJ; Mun SE; Sung J; Lee YW; Lee B
    Sci Rep; 2017 Mar; 7():43723. PubMed ID: 28262702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermochromic modulation of surface plasmon polaritons in vanadium dioxide nanocomposites.
    Jostmeier T; Mangold M; Zimmer J; Karl H; Krenner HJ; Ruppert C; Betz M
    Opt Express; 2016 Jul; 24(15):17321-31. PubMed ID: 27464181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrocatalytic glycerol oxidation enabled by surface plasmon polariton-induced hot carriers in Kretschmann configuration.
    Chung K; Zhu X; Zhuo X; Jang YJ; Choi CH; Lee JS; Kim SH; Kim M; Kim K; Kim D; Ham HC; Baba A; Wang J; Kim DH
    Nanoscale; 2019 Dec; 11(48):23234-23240. PubMed ID: 31782461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coexistent VO
    Qiu M; Yang W; Xu P; Huang T; Chen X; Dai N
    Nanomaterials (Basel); 2023 Apr; 13(9):. PubMed ID: 37177057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Localized surface plasmon resonance modulation of totally encapsulated VO
    Liang J; Guo J; Zhao Y; Zhang Y; Su T
    Nanotechnology; 2018 Jul; 29(27):275710. PubMed ID: 29667602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic field modulation of intense surface plasmon polaritons.
    Clavero C; Yang K; Skuza JR; Lukaszew RA
    Opt Express; 2010 Apr; 18(8):7743-52. PubMed ID: 20588615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photoinduced surface plasmon switching at VO
    Kumar N; Rúa A; Aldama J; Echeverría K; Fernández FE; Lysenko S
    Opt Express; 2018 May; 26(11):13773-13782. PubMed ID: 29877425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photothermal measurement of absorption and scattering losses in thin films excited by surface plasmons.
    Domené EA; Balzarotti F; Bragas AV; Martínez OE
    Opt Lett; 2009 Dec; 34(24):3797-9. PubMed ID: 20016617
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of Long-Range Surface Plasmon Excitation, Dynamic Range and Figure of Merit Using a Dielectric Resonant Cavity.
    Suvarnaphaet P; Pechprasarn S
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30131469
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interface Effects of Strain-Energy Potentials on Phase Transition Characteristics of VO
    Lappalainen J; Kangaspuoskari M
    ACS Omega; 2023 Jun; 8(23):21083-21095. PubMed ID: 37323390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement in the excitonic spontaneous emission rates for Si nanocrystal multi-layers covered with thin films of Au, Ag, and Al.
    Estrin Y; Rich DH; Rozenfeld N; Arad-Vosk N; Ron A; Sa'ar A
    Nanotechnology; 2015 Oct; 26(43):435701. PubMed ID: 26436289
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic-field modulation of surface plasmon polaritons on gratings.
    Clavero C; Yang K; Skuza JR; Lukaszew RA
    Opt Lett; 2010 May; 35(10):1557-9. PubMed ID: 20479807
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Observations of exciton-surface plasmon polariton coupling and exciton-phonon coupling in InGaN/GaN quantum wells covered with Au, Ag, and Al films.
    Estrin Y; Rich DH; Keller S; DenBaars SP
    J Phys Condens Matter; 2015 Jul; 27(26):265802. PubMed ID: 26076324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-Plane Radiation of Surface Plasmon Polaritons Excited by Free Electrons.
    Zhang P; Dong Y; Li X; Cao X; Yang Y; Yu G; Yang S; Wang S; Gong Y
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phase Change-Induced Magnetic Switching through Metal-Insulator Transition in VO
    Ma CT; Kittiwatanakul S; Sittipongpittaya A; Wang Y; Morshed MG; Ghosh AW; Poon SJ
    Nanomaterials (Basel); 2023 Oct; 13(21):. PubMed ID: 37947693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Control of plasmon-polariton vortices on the surface of a metal layer.
    Dzedolik IV; Pereskokov V
    J Opt Soc Am A Opt Image Sci Vis; 2018 Aug; 35(8):1420-1426. PubMed ID: 30110279
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface plasmon Raman scattering studies of liquid crystal anchoring on liquid-crystal-based self-assembled monolayers.
    Critchley K; Cheadle EM; Zhang HL; Baldwin KJ; Liu Q; Cheng Y; Fukushima H; Tamaki T; Batchelder DN; Bushby RJ; Evans SD
    J Phys Chem B; 2009 Nov; 113(47):15550-7. PubMed ID: 19921953
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.