These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 30469771)

  • 1. Photonic band engineering in absorbing media for spectrally selective optoelectronic films.
    Qiu B; Lin Y; Arinze ES; Chiu A; Li L; Thon SM
    Opt Express; 2018 Oct; 26(21):26933-26945. PubMed ID: 30469771
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic Photochemical and Optoelectronic Control of Photonic Fano Resonances via Monolayer MoS
    Zhang X; Biekert N; Choi S; Naylor CH; De-Eknamkul C; Huang W; Zhang X; Zheng X; Wang D; Johnson ATC; Cubukcu E
    Nano Lett; 2018 Feb; 18(2):957-963. PubMed ID: 29376383
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying Plasmon-Enhanced Light Absorption in Monolayer WS
    Butun S; Palacios E; Cain JD; Liu Z; Dravid VP; Aydin K
    ACS Appl Mater Interfaces; 2017 May; 9(17):15044-15051. PubMed ID: 28393525
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymmetric photonic resonances in GaN slab waveguide for mid infrared selective filters.
    Vangala SR; Avrutsky I; Keiffer P; Nader N; Walker D; Cleary JW; Hendrickson JR
    Opt Express; 2014 Oct; 22(20):24742-51. PubMed ID: 25322049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-finesse Fabry-Perot cavities with bidimensional Si
    Chen X; Chardin C; Makles K; Caër C; Chua S; Braive R; Robert-Philip I; Briant T; Cohadon PF; Heidmann A; Jacqmin T; Deléglise S
    Light Sci Appl; 2017 Jan; 6(1):e16190. PubMed ID: 30167192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fano resonance in a cholesteric liquid crystal with dye.
    Gevorgyan AH
    Phys Rev E; 2019 Jan; 99(1-1):012702. PubMed ID: 30780229
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
    Li Z; Butun S; Aydin K
    ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synchronously controlled optical modes in the transmittance and reflectance spectra of multilayer photonic structure with dual-frequency nematic liquid crystal.
    Gunyakov VA; Sutormin VS; Myslivets SA; Shabanov VF; Zyryanov VY
    Phys Rev E; 2022 Feb; 105(2-1):024702. PubMed ID: 35291172
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of Organometal Halide Perovskite Photonic Crystal Films for Potential Optoelectronic Applications.
    Schünemann S; Chen K; Brittman S; Garnett E; Tüysüz H
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25489-95. PubMed ID: 27589559
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Infrared Colloidal Quantum Dot Photovoltaics via Coupling Enhancement and Agglomeration Suppression.
    Ip AH; Kiani A; Kramer IJ; Voznyy O; Movahed HF; Levina L; Adachi MM; Hoogland S; Sargent EH
    ACS Nano; 2015 Sep; 9(9):8833-42. PubMed ID: 26266671
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dielectric core-shell optical antennas for strong solar absorption enhancement.
    Yu Y; Ferry VE; Alivisatos AP; Cao L
    Nano Lett; 2012 Jul; 12(7):3674-81. PubMed ID: 22686287
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficiency enhancement of perovskite solar cells based on opal-like photonic crystals.
    Lobet M; Piron P; Dewalque J; Maho A; Deparis O; Henrist C; Loicq J
    Opt Express; 2019 Oct; 27(22):32308-32322. PubMed ID: 31684446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Near-infrared absorption-induced switching effect via guided mode resonances in a graphene-based metamaterial.
    Qing YM; Ma HF; Ren YZ; Yu S; Cui TJ
    Opt Express; 2019 Feb; 27(4):5253-5263. PubMed ID: 30876126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Symmetric Continuously Tunable Photonic Band Gaps in Blue-Phase Liquid Crystals Switched by an Alternating Current Field.
    Du XW; Hou DS; Li X; Sun DP; Lan JF; Zhu JL; Ye WJ
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):22015-22020. PubMed ID: 31132240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectral control of near-field thermal radiation via photonic band engineering of two-dimensional photonic crystal slabs.
    Inoue T; Asano T; Noda S
    Opt Express; 2018 Nov; 26(24):32074-32082. PubMed ID: 30650786
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rational engineering of nanoporous anodic alumina optical bandpass filters.
    Santos A; Pereira T; Law CS; Losic D
    Nanoscale; 2016 Aug; 8(31):14846-57. PubMed ID: 27453573
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-perfect (>99%) dual-band absorption in the visible using ultrathin semiconducting gratings.
    Gong T; Munday JN
    Opt Express; 2022 Sep; 30(20):36500-36508. PubMed ID: 36258577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unidirectional Doubly Enhanced MoS
    Zhang X; Choi S; Wang D; Naylor CH; Johnson ATC; Cubukcu E
    Nano Lett; 2017 Nov; 17(11):6715-6720. PubMed ID: 28991494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tunable structures comprising two photonic crystal slabs--optical study in view of multi-analyte enhanced detection.
    Shi L; Pottier P; Skorobogatiy M; Peter YA
    Opt Express; 2009 Jun; 17(13):10623-32. PubMed ID: 19550458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultra-narrowband perfect absorption of monolayer two-dimensional materials enabled by all-dielectric subwavelength gratings.
    Nie J; Yu J; Liu W; Yu T; Gao P
    Opt Express; 2020 Dec; 28(26):38592-38602. PubMed ID: 33379426
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.