These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 30469785)

  • 1. Diffraction-limited near-spherical focal spot with controllable arbitrary polarization using single objective lens.
    Wan C; Yu Y; Zhan Q
    Opt Express; 2018 Oct; 26(21):27109-27117. PubMed ID: 30469785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Creating a spherical focal spot with spatially modulated radial polarization in 4Pi microscopy.
    Chen W; Zhan Q
    Opt Lett; 2009 Aug; 34(16):2444-6. PubMed ID: 19684810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical generation of multiple focal spot pairs with controllable position and polarization.
    Zhang Y; Chen J; Bai C; Zhang D; Zhan Q
    Opt Express; 2020 Aug; 28(18):26706-26716. PubMed ID: 32906939
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of transversely oriented optical polarization Möbius strips.
    Su L; Meng X; Xiao Y; Wan C; Zhan Q
    Opt Express; 2021 Aug; 29(16):25535-25542. PubMed ID: 34614883
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional magnetization needle arrays with controllable orientation.
    Luo J; Zhang H; Wang S; Shi L; Zhu Z; Gu B; Wang X; Li X
    Opt Lett; 2019 Feb; 44(4):727-730. PubMed ID: 30767972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tightly focused optical field with controllable photonic spin orientation.
    Chen J; Wan C; Kong LJ; Zhan Q
    Opt Express; 2017 Aug; 25(16):19517-19528. PubMed ID: 29041145
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focus engineering based on analytical formulae for tightly focused polarized beams with arbitrary geometric configurations of linear polarization.
    Man Z; Fu S; Wei G
    J Opt Soc Am A Opt Image Sci Vis; 2017 Aug; 34(8):1384-1391. PubMed ID: 29036105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental generation of complex optical fields for diffraction limited optical focus with purely transverse spin angular momentum.
    Chen J; Wan C; Kong L; Zhan Q
    Opt Express; 2017 Apr; 25(8):8966-8974. PubMed ID: 28437969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis of focused beam with controllable arbitrary homogeneous polarization using engineered vectorial optical fields.
    Rui G; Chen J; Wang X; Gu B; Cui Y; Zhan Q
    Opt Express; 2016 Oct; 24(21):23667-23676. PubMed ID: 27828203
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Controllable design of super-oscillatory lenses with multiple sub-diffraction-limit foci.
    Li M; Li W; Li H; Zhu Y; Yu Y
    Sci Rep; 2017 May; 7(1):1335. PubMed ID: 28465580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of aplanatic and real lens focused spots in the framework of the local plane interface approximation.
    Shi R; Wyrowski F
    J Opt Soc Am A Opt Image Sci Vis; 2019 Oct; 36(10):1801-1809. PubMed ID: 31674447
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pancharatnam-Berry phase shaping for control of the transverse enhancement of focusing.
    Man Z; Dou X; Fu S
    Opt Lett; 2019 Jan; 44(2):427-430. PubMed ID: 30644917
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Independent spatial intensity, phase and polarization distributions.
    Waller EH; von Freymann G
    Opt Express; 2013 Nov; 21(23):28167-74. PubMed ID: 24514328
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional characterization of tightly focused fields for various polarization incident beams.
    Cai Y; Liang Y; Lei M; Yan S; Wang Z; Yu X; Li M; Dan D; Qian J; Yao B
    Rev Sci Instrum; 2017 Jun; 88(6):063106. PubMed ID: 28667966
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Manipulation of dielectric Rayleigh particles using highly focused elliptically polarized vector fields.
    Gu B; Xu D; Rui G; Lian M; Cui Y; Zhan Q
    Appl Opt; 2015 Sep; 54(27):8123-9. PubMed ID: 26406514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lens wavefront compensation for 3D photomask effects in subwavelength optical lithography.
    Sears MK; Bekaert J; Smith BW
    Appl Opt; 2013 Jan; 52(3):314-22. PubMed ID: 23338176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast calculation of tightly focused random electromagnetic beams: controlling the focal field by spatial coherence.
    Tong R; Dong Z; Chen Y; Wang F; Cai Y; Setälä T
    Opt Express; 2020 Mar; 28(7):9713-9727. PubMed ID: 32225573
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Focusing properties of arbitrary optical fields combining spiral phase and cylindrically symmetric state of polarization.
    Man Z; Bai Z; Zhang S; Li J; Li X; Ge X; Zhang Y; Fu S
    J Opt Soc Am A Opt Image Sci Vis; 2018 Jun; 35(6):1014-1020. PubMed ID: 29877346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering of high purity ultra-long optical needle field through reversing the electric dipole array radiation.
    Wang J; Chen W; Zhan Q
    Opt Express; 2010 Oct; 18(21):21965-72. PubMed ID: 20941097
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vectorial design of super-oscillatory lens.
    Liu T; Tan J; Liu J; Wang H
    Opt Express; 2013 Jul; 21(13):15090-101. PubMed ID: 23842296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.