These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

72 related articles for article (PubMed ID: 30469894)

  • 1. Machine learning guided rapid focusing with sensor-less aberration corrections.
    Jin Y; Zhang Y; Hu L; Huang H; Xu Q; Zhu X; Huang L; Zheng Y; Shen HL; Gong W; Si K
    Opt Express; 2018 Nov; 26(23):30162-30171. PubMed ID: 30469894
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wavefront reconstruction based on deep transfer learning for microscopy.
    Jin Y; Chen J; Wu C; Chen Z; Zhang X; Shen HL; Gong W; Si K
    Opt Express; 2020 Jul; 28(14):20738-20747. PubMed ID: 32680127
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Application of Zernike polynomials towards accelerated adaptive focusing of transcranial high intensity focused ultrasound.
    Kaye EA; Hertzberg Y; Marx M; Werner B; Navon G; Levoy M; Pauly KB
    Med Phys; 2012 Oct; 39(10):6254-63. PubMed ID: 23039661
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic phase aberration compensation for digital holographic microscopy based on deep learning background detection.
    Nguyen T; Bui V; Lam V; Raub CB; Chang LC; Nehmetallah G
    Opt Express; 2017 Jun; 25(13):15043-15057. PubMed ID: 28788938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning-based Shack-Hartmann wavefront sensor for high-order aberration detection.
    Hu L; Hu S; Gong W; Si K
    Opt Express; 2019 Nov; 27(23):33504-33517. PubMed ID: 31878418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrashort echo-time MRI versus CT for skull aberration correction in MR-guided transcranial focused ultrasound: In vitro comparison on human calvaria.
    Miller GW; Eames M; Snell J; Aubry JF
    Med Phys; 2015 May; 42(5):2223-33. PubMed ID: 25979016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Improved Method of Measuring Wavefront Aberration Based on Image with Machine Learning in Free Space Optical Communication.
    Xu Y; He D; Wang Q; Guo H; Li Q; Xie Z; Huang Y
    Sensors (Basel); 2019 Aug; 19(17):. PubMed ID: 31450765
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing the wave aberration in eyes with keratoconus or penetrating keratoplasty using a high-dynamic range wavefront sensor.
    Pantanelli S; MacRae S; Jeong TM; Yoon G
    Ophthalmology; 2007 Nov; 114(11):2013-21. PubMed ID: 17553566
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrasound focusing using magnetic resonance acoustic radiation force imaging: application to ultrasound transcranial therapy.
    Hertzberg Y; Volovick A; Zur Y; Medan Y; Vitek S; Navon G
    Med Phys; 2010 Jun; 37(6):2934-42. PubMed ID: 20632605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiable model-based adaptive optics with transmitted and reflected light.
    Vishniakou I; Seelig JD
    Opt Express; 2020 Aug; 28(18):26436-26446. PubMed ID: 32906916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved Machine Learning Approach for Wavefront Sensing.
    Guo H; Xu Y; Li Q; Du S; He D; Wang Q; Huang Y
    Sensors (Basel); 2019 Aug; 19(16):. PubMed ID: 31412562
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Turbulence aberration correction for vector vortex beams using deep neural networks on experimental data.
    Zhai Y; Fu S; Zhang J; Liu X; Zhou H; Gao C
    Opt Express; 2020 Mar; 28(5):7515-7527. PubMed ID: 32225977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning based adaptive optics for doughnut-shaped beam.
    Zhang Y; Wu C; Song Y; Si K; Zheng Y; Hu L; Chen J; Tang L; Gong W
    Opt Express; 2019 Jun; 27(12):16871-16881. PubMed ID: 31252906
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aberration correction in stimulated emission depletion microscopy to increase imaging depth in living brain tissue.
    Bancelin S; Mercier L; Murana E; Nägerl UV
    Neurophotonics; 2021 Jul; 8(3):035001. PubMed ID: 34136589
    [No Abstract]   [Full Text] [Related]  

  • 15. Direct determination of aberration functions in microscopy by an artificial neural network.
    Cumming BP; Gu M
    Opt Express; 2020 May; 28(10):14511-14521. PubMed ID: 32403490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy.
    Fu Y; Mazur TR; Wu X; Liu S; Chang X; Lu Y; Li HH; Kim H; Roach MC; Henke L; Yang D
    Med Phys; 2018 Nov; 45(11):5129-5137. PubMed ID: 30269345
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting the deep learning wavefront sensor for real-time applications [Invited].
    Vera E; Guzmán F; Weinberger C
    Appl Opt; 2021 Apr; 60(10):B119-B124. PubMed ID: 33798145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive aberration correction in a confocal microscope.
    Booth MJ; Neil MA; Juskaitis R; Wilson T
    Proc Natl Acad Sci U S A; 2002 Apr; 99(9):5788-92. PubMed ID: 11959908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. MR-based synthetic CT generation using a deep convolutional neural network method.
    Han X
    Med Phys; 2017 Apr; 44(4):1408-1419. PubMed ID: 28192624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalised adaptive optics method for high-NA aberration-free refocusing in refractive-index-mismatched media.
    Cui J; Antonello J; Kirkpatrick AR; Salter PS; Booth MJ
    Opt Express; 2022 Mar; 30(7):11809-11824. PubMed ID: 35473116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.