These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 30469903)

  • 1. Relationship between the effective attenuation coefficient of spaceborne lidar signal and the IOPs of seawater.
    Liu Q; Liu D; Bai J; Zhang Y; Zhou Y; Xu P; Liu Z; Chen S; Che H; Wu L; Shen Y; Liu C
    Opt Express; 2018 Nov; 26(23):30278-30291. PubMed ID: 30469903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interpretation of airborne oceanic lidar: effects of multiple scattering.
    Gordon HR
    Appl Opt; 1982 Aug; 21(16):2996-3001. PubMed ID: 20396163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Validation of satellite-retrieved oceanic inherent optical properties: proposed two-color elastic backscatter lidar and retrieval theory.
    Hoge FE
    Appl Opt; 2003 Dec; 42(36):7197-201. PubMed ID: 14717299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shipborne variable-FOV, dual-wavelength, polarized ocean lidar: design and measurements in the Western Pacific.
    Liu Q; Wu S; Liu B; Liu J; Zhang K; Dai G; Tang J; Chen G
    Opt Express; 2022 Mar; 30(6):8927-8948. PubMed ID: 35299334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Instrument response effects on the retrieval of oceanic lidar.
    Shen X; Liu Z; Zhou Y; Liu Q; Xu P; Mao Z; Liu C; Tang L; Ying N; Hu M; Liu D
    Appl Opt; 2020 Apr; 59(10):C21-C30. PubMed ID: 32400562
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple scattering effects on the return spectrum of oceanic high-spectral-resolution lidar.
    Zhou Y; Chen W; Liu D; Cui X; Zhu X; Zheng Z; Liu Q; Tao Y
    Opt Express; 2019 Oct; 27(21):30204-30216. PubMed ID: 31684270
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of atmospheric and system parameters on multiple scattering in spaceborne backscatter lidar measurements.
    Völger P; Cheng AY; Sugimoto N
    Appl Opt; 2005 Feb; 44(6):1051-66. PubMed ID: 15751697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ocean mixed layer depth estimation using airborne Brillouin scattering lidar: simulation and model.
    Yuan D; Chen P; Mao Z; Zhang X; Zhang Z; Xie C; Zhong C; Qian Z
    Appl Opt; 2021 Dec; 60(36):11180-11188. PubMed ID: 35201106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase function effects on the retrieval of oceanic high-spectral-resolution lidar.
    Liu D; Zhou Y; Chen W; Liu Q; Huang T; Liu W; Chen Q; Liu Z; Xu P; Cui X; Wang X; Le C; Liu C
    Opt Express; 2019 Jun; 27(12):A654-A668. PubMed ID: 31252845
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination by spaceborne backscatter lidar of the structural parameters of atmospheric scattering layers.
    Chazette P; Pelon J; Mégie G
    Appl Opt; 2001 Jul; 40(21):3428-40. PubMed ID: 18360368
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retrieval of cloud optical parameters from space-based backscatter lidar data.
    Balin YS; Samoilova SV; Krekova MM; Winker DM
    Appl Opt; 1999 Oct; 38(30):6365-73. PubMed ID: 18324166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Method for reconstructing atmospheric optical parameters from the data of polarization lidar sensing.
    Samoilova SV; Balin YS; Krekova MM; Winker DM
    Appl Opt; 2005 Jun; 44(17):3499-509. PubMed ID: 16007848
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Polarized lidar and ocean particles: insights from a mesoscale coccolithophore bloom.
    Collister BL; Zimmerman RC; Hill VJ; Sukenik CI; Balch WM
    Appl Opt; 2020 May; 59(15):4650-4662. PubMed ID: 32543574
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shipborne oceanic high-spectral-resolution lidar for accurate estimation of seawater depth-resolved optical properties.
    Zhou Y; Chen Y; Zhao H; Jamet C; Dionisi D; Chami M; Di Girolamo P; Churnside JH; Malinka A; Zhao H; Qiu D; Cui T; Liu Q; Chen Y; Phongphattarawat S; Wang N; Chen S; Chen P; Yao Z; Le C; Tao Y; Xu P; Wang X; Wang B; Chen F; Ye C; Zhang K; Liu C; Liu D
    Light Sci Appl; 2022 Sep; 11(1):261. PubMed ID: 36055999
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of molecular scattering models on aerosol optical properties measured by high spectral resolution lidar.
    Liu BY; Esselborn M; Wirth M; Fix A; Bi DC; Ehret G
    Appl Opt; 2009 Sep; 48(27):5143-54. PubMed ID: 19767932
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new model for the vertical spectral diffuse attenuation coefficient of downwelling irradiance in turbid coastal waters: validation with in situ measurements.
    Simon A; Shanmugam P
    Opt Express; 2013 Dec; 21(24):30082-106. PubMed ID: 24514558
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of the air-water interface on hydrosol lidar operation.
    Kokhanenko GP; Krekova MM; Penner LE; Shamanaev VS
    Appl Opt; 2005 Jun; 44(17):3510-9. PubMed ID: 16007849
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncertainties associated to measurements of inherent optical properties in natural waters.
    Leymarie E; Doxaran D; Babin M
    Appl Opt; 2010 Oct; 49(28):5415-36. PubMed ID: 20885480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lidar remote sensing of the aquatic environment: invited.
    Churnside JH; Shaw JA
    Appl Opt; 2020 Apr; 59(10):C92-C99. PubMed ID: 32400573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Water Cloud Detection with Circular Polarization Lidar: A Semianalytic Monte Carlo Simulation Approach.
    Ahmad W; Zhang K; Tong Y; Xiao D; Wu L; Liu D
    Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.