These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Plasmonically enhanced thermomechanical detection of infrared radiation. Yi F; Zhu H; Reed JC; Cubukcu E Nano Lett; 2013 Apr; 13(4):1638-43. PubMed ID: 23484543 [TBL] [Abstract][Full Text] [Related]
4. Photonic nanowires: from subwavelength waveguides to optical sensors. Guo X; Ying Y; Tong L Acc Chem Res; 2014 Feb; 47(2):656-66. PubMed ID: 24377258 [TBL] [Abstract][Full Text] [Related]
5. Demonstration of a refractometric sensor based on an optical micro-fiber three-beam interferometer. Han C; Ding H; Lv F Sci Rep; 2014 Dec; 4():7504. PubMed ID: 25511687 [TBL] [Abstract][Full Text] [Related]
6. Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. Nam JM; Oh JW; Lee H; Suh YD Acc Chem Res; 2016 Dec; 49(12):2746-2755. PubMed ID: 27993009 [TBL] [Abstract][Full Text] [Related]
7. Microfiber-coupled superconducting nanowire single-photon detector for near-infrared wavelengths. You L; Wu J; Xu Y; Hou X; Fang W; Li H; Zhang W; Zhang L; Liu X; Tong L; Wang Z; Xie X Opt Express; 2017 Dec; 25(25):31221-31229. PubMed ID: 29245799 [TBL] [Abstract][Full Text] [Related]
8. Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. Li Z; Butun S; Aydin K ACS Nano; 2014 Aug; 8(8):8242-8. PubMed ID: 25072803 [TBL] [Abstract][Full Text] [Related]
10. Self-Assembled Active Plasmonic Waveguide with a Peptide-Based Thermomechanical Switch. Vogele K; List J; Pardatscher G; Holland NB; Simmel FC; Pirzer T ACS Nano; 2016 Dec; 10(12):11377-11384. PubMed ID: 28024323 [TBL] [Abstract][Full Text] [Related]
11. Achieving an ultra-narrow multiband light absorption meta-surface via coupling with an optical cavity. Liu Z; Liu G; Liu X; Huang S; Wang Y; Pan P; Liu M Nanotechnology; 2015 Jun; 26(23):235702. PubMed ID: 25987526 [TBL] [Abstract][Full Text] [Related]
12. Boosting infrared energy transfer in 3D nanoporous gold antennas. Garoli D; Calandrini E; Bozzola A; Ortolani M; Cattarin S; Barison S; Toma A; De Angelis F Nanoscale; 2017 Jan; 9(2):915-922. PubMed ID: 28000833 [TBL] [Abstract][Full Text] [Related]
13. Piezoelectric tuning of narrowband perfect plasmonic absorbers via an optomechanic cavity. Yang A; Yang K; Yu H; Tan X; Li J; Zhou L; Liu H; Song H; Tang J; Liu F; Zhu AY; Guo Q; Yi F Opt Lett; 2016 Jun; 41(12):2803-6. PubMed ID: 27304293 [TBL] [Abstract][Full Text] [Related]
14. Harnessing optical forces in integrated photonic circuits. Li M; Pernice WH; Xiong C; Baehr-Jones T; Hochberg M; Tang HX Nature; 2008 Nov; 456(7221):480-4. PubMed ID: 19037311 [TBL] [Abstract][Full Text] [Related]
15. Stacked optical antennas for plasmon propagation in a 5 nm-confined cavity. Saeed A; Panaro S; Zaccaria RP; Raja W; Liberale C; Dipalo M; Messina GC; Wang H; De Angelis F; Toma A Sci Rep; 2015 Jun; 5():11237. PubMed ID: 26057661 [TBL] [Abstract][Full Text] [Related]
16. Superconducting nanowire single-photon detectors integrated with optical nano-antennae. Hu X; Dauler EA; Molnar RJ; Berggren KK Opt Express; 2011 Jan; 19(1):17-31. PubMed ID: 21263538 [TBL] [Abstract][Full Text] [Related]
17. Tailoring the Spectroscopic Properties of Semiconductor Nanowires via Surface-Plasmon-Based Optical Engineering. Aspetti CO; Agarwal R J Phys Chem Lett; 2014 Nov; 5(21):3768-3780. PubMed ID: 25396030 [TBL] [Abstract][Full Text] [Related]
18. Compact on-chip plasmonic light concentration based on a hybrid photonic-plasmonic structure. Luo Y; Chamanzar M; Adibi A Opt Express; 2013 Jan; 21(2):1898-910. PubMed ID: 23389173 [TBL] [Abstract][Full Text] [Related]