BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 30469958)

  • 1. Diffraction limited mid-infrared reflectance microspectroscopy with a supercontinuum laser.
    Kilgus J; Langer G; Duswald K; Zimmerleiter R; Zorin I; Berer T; Brandstetter M
    Opt Express; 2018 Nov; 26(23):30644-30654. PubMed ID: 30469958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mid-Infrared Standoff Spectroscopy Using a Supercontinuum Laser with Compact Fabry-Pérot Filter Spectrometers.
    Kilgus J; Duswald K; Langer G; Brandstetter M
    Appl Spectrosc; 2018 Apr; 72(4):634-642. PubMed ID: 29164925
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity-Enhanced Fourier Transform Mid-Infrared Spectroscopy Using a Supercontinuum Laser Source.
    Zorin I; Kilgus J; Duswald K; Lendl B; Heise B; Brandstetter M
    Appl Spectrosc; 2020 Apr; 74(4):485-493. PubMed ID: 32096412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced mid-infrared multi-bounce ATR spectroscopy for online detection of hydrogen peroxide using a supercontinuum laser.
    Gasser C; Kilgus J; Harasek M; Lendl B; Brandstetter M
    Opt Express; 2018 Apr; 26(9):12169-12179. PubMed ID: 29716131
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffraction-limited hyperspectral mid-infrared single-pixel microscopy.
    Ebner A; Gattinger P; Zorin I; Krainer L; Rankl C; Brandstetter M
    Sci Rep; 2023 Jan; 13(1):281. PubMed ID: 36609672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NIR to MIR ultra-broadband supercontinuum laser source based on all-silica fibers.
    Lei H; Xie K; Wang X; Wang S; Luo H; Li J
    Opt Express; 2023 Aug; 31(18):29403-29410. PubMed ID: 37710741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mid-infrared hyperspectral sensor based on MEMS Fabry-Pérot interferometer for stand-off sensing applications.
    Saleh A; Mekhrengin M; Dönsberg T; Kääriäinen T; Genoud G; Toivonen J
    Sci Rep; 2022 Nov; 12(1):19392. PubMed ID: 36371513
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Over 50 W all-fiber mid-infrared supercontinuum laser.
    Jiao Y; Jia Z; Zhang C; Guo X; Meng F; Guo Q; Yu Y; Ohishi Y; Qin W; Qin G
    Opt Express; 2023 Sep; 31(19):31082-31091. PubMed ID: 37710636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mid-infrared supercontinuum-based upconversion detection for trace gas sensing.
    Jahromi KE; Pan Q; Høgstedt L; Friis SMM; Khodabakhsh A; Moselund PM; Harren FJM
    Opt Express; 2019 Aug; 27(17):24469-24480. PubMed ID: 31510335
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A method for examining the chemical basis for bone disease: synchrotron infrared microspectroscopy.
    Miller LM; Carlson CS; Carr GL; Chance MR
    Cell Mol Biol (Noisy-le-grand); 1998 Feb; 44(1):117-27. PubMed ID: 9551644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time high-resolution mid-infrared optical coherence tomography.
    Israelsen NM; Petersen CR; Barh A; Jain D; Jensen M; Hannesschläger G; Tidemand-Lichtenberg P; Pedersen C; Podoleanu A; Bang O
    Light Sci Appl; 2019; 8():11. PubMed ID: 30675345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-power mid-infrared supercontinuum generation in a fluoroindate fiber with over 2 W power beyond 3.8 µm.
    Yang L; Zhang B; He X; Deng K; Liu S; Hou J
    Opt Express; 2020 May; 28(10):14973-14979. PubMed ID: 32403529
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in mid-infrared spectroscopy enabled by supercontinuum laser sources.
    Zorin I; Gattinger P; Ebner A; Brandstetter M
    Opt Express; 2022 Feb; 30(4):5222-5254. PubMed ID: 35209491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mid-infrared supercontinuum-based Fourier transform spectroscopy for plasma analysis.
    Krebbers R; Liu N; Jahromi KE; Nematollahi M; Bang O; Woyessa G; Petersen CR; van Rooij G; Harren FJM; Khodabakhsh A; Cristescu SM
    Sci Rep; 2022 Jun; 12(1):9642. PubMed ID: 35688925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prospective on using fibre mid-infrared supercontinuum laser sources for in vivo spectral discrimination of disease.
    Seddon AB; Napier B; Lindsay I; Lamrini S; Moselund PM; Stone N; Bang O; Farries M
    Analyst; 2018 Dec; 143(24):5874-5887. PubMed ID: 30475355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. GaAs-chip-based mid-infrared supercontinuum generation.
    Granger G; Bailly M; Delahaye H; Jimenez C; Tiliouine I; Leventoux Y; Orlianges JC; Couderc V; Gérard B; Becheker R; Idlahcen S; Godin T; Hideur A; Grisard A; Lallier E; Février S
    Light Sci Appl; 2023 Oct; 12(1):252. PubMed ID: 37848458
    [TBL] [Abstract][Full Text] [Related]  

  • 17. IR microscopy utilizing intense supercontinuum light source.
    Dupont S; Petersen C; Thøgersen J; Agger C; Bang O; Keiding SR
    Opt Express; 2012 Feb; 20(5):4887-92. PubMed ID: 22418294
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual-band infrared optical coherence tomography using a single supercontinuum source.
    Zorin I; Gattinger P; Brandstetter M; Heise B
    Opt Express; 2020 Mar; 28(6):7858-7874. PubMed ID: 32225421
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fourier transform spectrometry with a near-infrared supercontinuum source.
    Michaels CA; Masiello T; Chu PM
    Appl Spectrosc; 2009 May; 63(5):538-43. PubMed ID: 19470210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Restoration and spectral recovery of mid-infrared chemical images.
    Mattson EC; Nasse MJ; Rak M; Gough KM; Hirschmugl CJ
    Anal Chem; 2012 Jul; 84(14):6173-80. PubMed ID: 22732086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.