These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 30470064)

  • 1. Lasing threshold of the bound states in the continuum in the plasmonic lattices.
    Pavlov A; Zabkov I; Klimov V
    Opt Express; 2018 Oct; 26(22):28948-28962. PubMed ID: 30470064
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lasing Action from Quasi-Propagating Modes.
    Tan MJH; Park JE; Freire-Fernández F; Guan J; Juarez XG; Odom TW
    Adv Mater; 2022 Aug; 34(34):e2203999. PubMed ID: 35734937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unidirectional Lasing from Mirror-Coupled Dielectric Lattices.
    Zhao G; Gao X; Zhou Y; Song M; Du Y; Li Z; Guan J; Cai Y; Ao X
    Nano Lett; 2024 Mar; 24(11):3378-3385. PubMed ID: 38456747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bound State in the Continuum in Nanoantenna-Coupled Slab Waveguide Enables Low-Threshold Quantum-Dot Lasing.
    Wu M; Ding L; Sabatini RP; Sagar LK; Bappi G; Paniagua-Domínguez R; Sargent EH; Kuznetsov AI
    Nano Lett; 2021 Nov; 21(22):9754-9760. PubMed ID: 34780696
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmonic Nanoparticle Lattice Devices for White-Light Lasing.
    Guan J; Li R; Juarez XG; Sample AD; Wang Y; Schatz GC; Odom TW
    Adv Mater; 2023 Aug; 35(34):e2103262. PubMed ID: 34510573
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual-Wavelength Lasing in Quantum-Dot Plasmonic Lattice Lasers.
    Winkler JM; Ruckriegel MJ; Rojo H; Keitel RC; De Leo E; Rabouw FT; Norris DJ
    ACS Nano; 2020 May; 14(5):5223-5232. PubMed ID: 32159334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compact Plasmonic Distributed-Feedback Lasers as Dark Sources of Surface Plasmon Polaritons.
    Brechbühler R; Vonk SJW; Aellen M; Lassaline N; Keitel RC; Cocina A; Rossinelli AA; Rabouw FT; Norris DJ
    ACS Nano; 2021 Jun; 15(6):9935-9944. PubMed ID: 34029074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering Directionality in Quantum Dot Shell Lasing Using Plasmonic Lattices.
    Guan J; Sagar LK; Li R; Wang D; Bappi G; Watkins NE; Bourgeois MR; Levina L; Fan F; Hoogland S; Voznyy O; Martins de Pina J; Schaller RD; Schatz GC; Sargent EH; Odom TW
    Nano Lett; 2020 Feb; 20(2):1468-1474. PubMed ID: 32004007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inducing lasing in organic materials with low optical gain by three-dimensional plasmonic nanocavity arrays.
    Han C; Qi Y; Wang Y; Ye J
    Opt Express; 2019 Jul; 27(15):20597-20607. PubMed ID: 31510150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Lattice Resonance Lasers with Epitaxial InP Gain Medium.
    Fischer A; Severs Millard T; Xiao X; Raziman TV; Dranczewski J; Schofield RC; Schmid H; Moselund K; Sapienza R; Oulton RF
    ACS Photonics; 2024 Oct; 11(10):4316-4322. PubMed ID: 39429864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasi-BIC Mode Lasing in a Quadrumer Plasmonic Lattice.
    Heilmann R; Salerno G; Cuerda J; Hakala TK; Törmä P
    ACS Photonics; 2022 Jan; 9(1):224-232. PubMed ID: 35083367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmonic distributed feedback lasing in an anodic aluminum oxide/silver/polymer hybrid membrane.
    Feng C; Tong J; Cui L; Zhao Y; Zhai T
    Opt Express; 2022 Aug; 30(16):28589-28600. PubMed ID: 36299051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low-threshold plasmonic lasing based on high-Q dipole void mode in a metallic nanoshell.
    Pan J; Chen Z; Chen J; Zhan P; Tang CJ; Wang ZL
    Opt Lett; 2012 Apr; 37(7):1181-3. PubMed ID: 22466188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultralow-threshold laser using super-bound states in the continuum.
    Hwang MS; Lee HC; Kim KH; Jeong KY; Kwon SH; Koshelev K; Kivshar Y; Park HG
    Nat Commun; 2021 Jul; 12(1):4135. PubMed ID: 34226557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lasing in dark and bright modes of a finite-sized plasmonic lattice.
    Hakala TK; Rekola HT; Väkeväinen AI; Martikainen JP; Nečada M; Moilanen AJ; Törmä P
    Nat Commun; 2017 Jan; 8():13687. PubMed ID: 28045047
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous symmetry breaking in plasmon lattice lasers.
    de Gaay Fortman N; Kolkowski R; Pal D; Rodriguez SRK; Schall P; Koenderink AF
    Sci Adv; 2024 Jul; 10(27):eadn2723. PubMed ID: 38968356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of Hole Shift on Threshold Characteristics of GaSb-Based Double-Hole Photonic-Crystal Surface-Emitting Lasers.
    Huang YH; Yang ZX; Cheng SL; Lin CH; Lin G; Sun KW; Lee CP
    Micromachines (Basel); 2021 Apr; 12(5):. PubMed ID: 33919126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Threshold gain in aperiodic lattice lasers.
    Folland TG; Hua L; Chakraborty S
    Opt Express; 2016 Dec; 24(26):30024-30030. PubMed ID: 28059387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hybrid Multilayered Plasmonic Nanostars for Coherent Random Lasing.
    Munkhbat B; Ziegler J; Pöhl H; Wörister C; Sivun D; Scharber MC; Klar TA; Hrelescu C
    J Phys Chem C Nanomater Interfaces; 2016 Oct; 120(41):23707-23715. PubMed ID: 27795752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Super low threshold plasmonic WGM lasing from an individual ZnO hexagonal microrod on an Au substrate for plasmon lasers.
    Dong HM; Yang YH; Yang GW
    Sci Rep; 2015 Mar; 5():8776. PubMed ID: 25739662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.