These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 30470069)
1. Continuous-discontinuous Galerkin time domain (CDGTD) method with generalized dispersive material (GDM) model for computational photonics. Ren Q; Bao H; Campbell SD; Prokopeva LJ; Kildishev AV; Werner DH Opt Express; 2018 Oct; 26(22):29005-29016. PubMed ID: 30470069 [TBL] [Abstract][Full Text] [Related]
2. Discontinuous Galerkin time domain analysis of electromagnetic scattering from dispersive periodic nanostructures at oblique incidence. Bao H; Kang L; Campbell SD; Werner DH Opt Express; 2019 Apr; 27(9):13116-13128. PubMed ID: 31052841 [TBL] [Abstract][Full Text] [Related]
3. Conductive mixed-order generalized dispersion model for noble metals in the optical regime. Mai W; Campbell SD; Werner DH Opt Express; 2021 Sep; 29(19):30520-30531. PubMed ID: 34614775 [TBL] [Abstract][Full Text] [Related]
4. Efficient Wideband Numerical Simulations for Nanostructures Employing a Drude-Critical Points (DCP) Dispersive Model. Ren Q; Nagar J; Kang L; Bian Y; Werner P; Werner DH Sci Rep; 2017 May; 7(1):2126. PubMed ID: 28522828 [TBL] [Abstract][Full Text] [Related]
5. Topology optimization of dispersive plasmonic nanostructures in the time-domain. Hassan E; Calà Lesina A Opt Express; 2022 May; 30(11):19557-19572. PubMed ID: 36221729 [TBL] [Abstract][Full Text] [Related]
6. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007). Hafner J J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862 [TBL] [Abstract][Full Text] [Related]
7. Application of a discontinuous Galerkin time domain method to simulation of optical properties of dielectric particles. Tang G; Panetta RL; Yang P Appl Opt; 2010 May; 49(15):2827-40. PubMed ID: 20490244 [TBL] [Abstract][Full Text] [Related]
8. High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem. Hesthaven JS; Warburton T Philos Trans A Math Phys Eng Sci; 2004 Mar; 362(1816):493-524. PubMed ID: 15306505 [TBL] [Abstract][Full Text] [Related]
9. Simulation of the nonlinear Kerr and Raman effect with a parallel local time-stepping DGTD solver. Zhang T; Peng Y; Dai Z; Bao H; Xiao Z; Chen X; Ding D Opt Express; 2023 Jan; 31(1):344-354. PubMed ID: 36606971 [TBL] [Abstract][Full Text] [Related]
10. Unified perfectly matched layer for finite-difference time-domain modeling of dispersive optical materials. Udagedara I; Premaratne M; Rukhlenko ID; Hattori HT; Agrawal GP Opt Express; 2009 Nov; 17(23):21179-90. PubMed ID: 19997357 [TBL] [Abstract][Full Text] [Related]
11. Time-domain impedance boundary condition modeling with the discontinuous Galerkin method for room acoustics simulations. Wang H; Hornikx M J Acoust Soc Am; 2020 Apr; 147(4):2534. PubMed ID: 32359313 [TBL] [Abstract][Full Text] [Related]
14. Discontinuous Galerkin finite element method for solving population density functions of cortical pyramidal and thalamic neuronal populations. Huang CH; Lin CC; Ju MS Comput Biol Med; 2015 Feb; 57():150-8. PubMed ID: 25557200 [TBL] [Abstract][Full Text] [Related]
15. Effective optical response of silicon to sunlight in the finite-difference time-domain method. Deinega A; John S Opt Lett; 2012 Jan; 37(1):112-4. PubMed ID: 22212808 [TBL] [Abstract][Full Text] [Related]
16. Stretched-coordinate PMLs for Maxwell's equations in the discontinuous Galerkin time-domain method. König M; Prohm C; Busch K; Niegemann J Opt Express; 2011 Feb; 19(5):4618-31. PubMed ID: 21369294 [TBL] [Abstract][Full Text] [Related]
17. An efficient and high-order convergence mode solver for solving graphene and phosphorene-based waveguides. Huang CC Opt Express; 2021 Jan; 29(2):1147-1161. PubMed ID: 33726336 [TBL] [Abstract][Full Text] [Related]
18. Chebyshev polynomial filtered subspace iteration in the discontinuous Galerkin method for large-scale electronic structure calculations. Banerjee AS; Lin L; Hu W; Yang C; Pask JE J Chem Phys; 2016 Oct; 145(15):154101. PubMed ID: 27782453 [TBL] [Abstract][Full Text] [Related]
19. From molecular design and materials construction to organic nanophotonic devices. Zhang C; Yan Y; Zhao YS; Yao J Acc Chem Res; 2014 Dec; 47(12):3448-58. PubMed ID: 25343682 [TBL] [Abstract][Full Text] [Related]
20. The HIE-FDTD Method for Simulating Dispersion Media Represented by Drude, Debye, and Lorentz Models. Chen J; Mou C Nanomaterials (Basel); 2023 Mar; 13(7):. PubMed ID: 37049274 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]