These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 30470080)

  • 1. Subsurface plankton layers observed from airborne lidar in Sanya Bay, South China Sea.
    Liu H; Chen P; Mao Z; Pan D; He Y
    Opt Express; 2018 Oct; 26(22):29134-29147. PubMed ID: 30470080
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detecting subsurface phytoplankton layer in Qiandao Lake using shipborne lidar.
    Chen P; Mao Z; Zhang Z; Liu H; Pan D
    Opt Express; 2020 Jan; 28(1):558-569. PubMed ID: 32118981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Airborne lidar detection of subsurface oceanic scattering layers.
    Hoge FE; Wright CW; Krabill WB; Buntzen RR; Gilbert GD; Swift RN; Yungel JK; Berry RE
    Appl Opt; 1988 Oct; 27(19):3969-77. PubMed ID: 20539503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spaceborne Lidar in the Study of Marine Systems.
    Hostetler CA; Behrenfeld MJ; Hu Y; Hair JW; Schulien JA
    Ann Rev Mar Sci; 2018 Jan; 10():121-147. PubMed ID: 28961071
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remote sensing of seawater optical properties and the subsurface phytoplankton layer in coastal waters using an airborne multiwavelength polarimetric ocean lidar.
    Yuan D; Mao Z; Chen P; He Y; Pan D
    Opt Express; 2022 Aug; 30(16):29564-29583. PubMed ID: 36299129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Subsurface phytoplankton vertical structure from lidar observation during SCS summer monsoon onset.
    Zhang S; Chen P
    Opt Express; 2022 May; 30(11):17665-17679. PubMed ID: 36221584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Laser sensing of a subsurface oceanic layer. I. Effect of the atmosphere and wind-driven sea waves.
    Krekov GM; Krekova MM; Shamanaev VS
    Appl Opt; 1998 Mar; 37(9):1589-95. PubMed ID: 18268752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subsurface phytoplankton vertical structure observations using offshore fixed platform-based lidar in the Bohai Sea for offshore responses to Typhoon Bavi.
    Chen P
    Opt Express; 2022 Jun; 30(12):20614-20628. PubMed ID: 36224802
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Laser Sensing of a Subsurface Oceanic Layer. II. Polarization Characteristics of Signals.
    Krekov GM; Krekova MM; Shamanaev VS
    Appl Opt; 1998 Mar; 37(9):1596-601. PubMed ID: 18268753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shipborne single-photon fluorescence oceanic lidar: instrumentation and inversion.
    Shangguan M; Guo Y; Liao Z
    Opt Express; 2024 Mar; 32(6):10204-10218. PubMed ID: 38571237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of subsurface chlorophyll maxima during the boreal summer in the South China Sea with respect to environmental properties.
    Xu W; Wang G; Cheng X; Jiang L; Zhou W; Cao W
    Sci Total Environ; 2022 May; 820():153243. PubMed ID: 35065118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensing profiles of the volume scattering function at 180° using a single-photon oceanic fluorescence lidar.
    Shangguan M; Guo Y; Liao Z; Lee Z
    Opt Express; 2023 Nov; 31(24):40393-40410. PubMed ID: 38041342
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shipborne oceanic high-spectral-resolution lidar for accurate estimation of seawater depth-resolved optical properties.
    Zhou Y; Chen Y; Zhao H; Jamet C; Dionisi D; Chami M; Di Girolamo P; Churnside JH; Malinka A; Zhao H; Qiu D; Cui T; Liu Q; Chen Y; Phongphattarawat S; Wang N; Chen S; Chen P; Yao Z; Le C; Tao Y; Xu P; Wang X; Wang B; Chen F; Ye C; Zhang K; Liu C; Liu D
    Light Sci Appl; 2022 Sep; 11(1):261. PubMed ID: 36055999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of the Accuracy of Bathymetry on the Nearshore Coastlines of Western Korea from Satellite Altimetry, Multi-Beam, and Airborne Bathymetric LiDAR.
    Yeu Y; Yee JJ; Yun HS; Kim KB
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30177653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensing the profile of particulate beam attenuation coefficient through a single-photon oceanic Raman lidar.
    Shangguan M; Liao Z; Guo Y; Lee Z
    Opt Express; 2023 Jul; 31(16):25398-25414. PubMed ID: 37710428
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Depth-Adaptive Waveform Decomposition Method for Airborne LiDAR Bathymetry.
    Xing S; Wang D; Xu Q; Lin Y; Li P; Jiao L; Zhang X; Liu C
    Sensors (Basel); 2019 Nov; 19(23):. PubMed ID: 31757030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vertically- resolved phytoplankton carbon and net primary production from a high spectral resolution lidar.
    Schulien JA; Behrenfeld MJ; Hair JW; Hostetler CA; Twardowski MS
    Opt Express; 2017 Jun; 25(12):13577-13587. PubMed ID: 28788901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lidar equation for ocean surface and subsurface.
    Josset D; Zhai PW; Hu Y; Pelon J; Lucker PL
    Opt Express; 2010 Sep; 18(20):20862-75. PubMed ID: 20940981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical evaluation of the possibilities of remote laser sensing of fish schools.
    Krekova MM; Krekov GM; Samokhvalov IV; Shamanaev VS
    Appl Opt; 1994 Aug; 33(24):5715-20. PubMed ID: 20935973
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Surface Water Quality along the Coast of Sanya, South China Sea.
    Wu ZZ; Che ZW; Wang YS; Dong JD; Wu ML
    PLoS One; 2015; 10(4):e0123515. PubMed ID: 25894980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.