These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30470085)

  • 1. Realization of mid-infrared broadband absorption in monolayer graphene based on strong coupling between graphene nanoribbons and metal tapered grooves.
    Huang L; Hu G; Deng C; Zhu Y; Yun B; Zhang R; Cui Y
    Opt Express; 2018 Oct; 26(22):29192-29202. PubMed ID: 30470085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Coupling-Enhanced Broadband Mid-infrared Light Absorption in Graphene Plasmonic Nanostructures.
    Deng B; Guo Q; Li C; Wang H; Ling X; Farmer DB; Han SJ; Kong J; Xia F
    ACS Nano; 2016 Dec; 10(12):11172-11178. PubMed ID: 28024379
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substrate phonon-mediated plasmon hybridization in coplanar graphene nanostructures for broadband plasmonic circuits.
    Yang X; Kong XT; Bai B; Li Z; Hu H; Qiu X; Dai Q
    Small; 2015 Feb; 11(5):591-6. PubMed ID: 25273326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of broadband graphene-metamaterial absorbers for permittivity sensing at mid-infrared regions.
    Huang H; Xia H; Xie W; Guo Z; Li H; Xie D
    Sci Rep; 2018 Mar; 8(1):4183. PubMed ID: 29520032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Broadband optical waveguide modulators based on strongly coupled hybrid graphene and metal nanoribbons for near-infrared applications.
    Ye L; Sui K; Zhang Y; Liu QH
    Nanoscale; 2019 Feb; 11(7):3229-3239. PubMed ID: 30706929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monolayer-graphene-based broadband and wide-angle perfect absorption structures in the near infrared.
    Fan Y; Guo C; Zhu Z; Xu W; Wu F; Yuan X; Qin S
    Sci Rep; 2018 Sep; 8(1):13709. PubMed ID: 30209289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene-based hybrid plasmonic waveguide for highly efficient broadband mid-infrared propagation and modulation.
    Ye L; Sui K; Liu Y; Zhang M; Liu QH
    Opt Express; 2018 Jun; 26(12):15935-15947. PubMed ID: 30114847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mid-infrared subwavelength modulator based on grating-assisted coupling of a hybrid plasmonic waveguide mode to a graphene plasmon.
    Kim Y; Kwon MS
    Nanoscale; 2017 Nov; 9(44):17429-17438. PubMed ID: 29104985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Broadband light absorption in graphene ribbons by canceling strong coupling at subwavelength scale.
    Shi X; Ge L; Wen X; Han D; Yang Y
    Opt Express; 2016 Nov; 24(23):26357-26362. PubMed ID: 27857371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Broadband silicon optical modulator using a graphene-integrated hybrid plasmonic waveguide.
    Shin JS; Kim JT
    Nanotechnology; 2015 Sep; 26(36):365201. PubMed ID: 26293975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultra-broadband infrared absorption by tapered hyperbolic multilayer waveguides.
    Deng H; Mathai CJ; Gangopadhyay S; Gao J; Yang X
    Opt Express; 2018 Mar; 26(5):6360-6370. PubMed ID: 29529828
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong coherent coupling between graphene surface plasmons and anisotropic black phosphorus localized surface plasmons.
    Nong J; Wei W; Wang W; Lan G; Shang Z; Yi J; Tang L
    Opt Express; 2018 Jan; 26(2):1633-1644. PubMed ID: 29402035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wide-angle broadband absorption in tapered patch antennas.
    Liu L; Peng H; Pu Y; Ying X; Li Z; Xu J; Jiang Y; Liu Z
    Opt Express; 2018 Jan; 26(2):1064-1071. PubMed ID: 29401979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable broadband plasmonic field enhancement on a graphene surface using a normal-incidence plane wave at mid-infrared frequencies.
    Zhang T; Chen L; Wang B; Li X
    Sci Rep; 2015 Jun; 5():11195. PubMed ID: 26057188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear Terahertz Absorption of Graphene Plasmons.
    Jadidi MM; König-Otto JC; Winnerl S; Sushkov AB; Drew HD; Murphy TE; Mittendorff M
    Nano Lett; 2016 Apr; 16(4):2734-8. PubMed ID: 26978242
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene Metamaterial Embedded within Bundt Optenna for Ultra-Broadband Infrared Enhanced Absorption.
    Awad E
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35807966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of optical absorption enhancement of plasmonic configuration by graphene on LiNbO
    Liu K; Lu F; Xu Y; Ma C
    Nanotechnology; 2021 Nov; 33(4):. PubMed ID: 34649234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Edge and Surface Plasmons in Graphene Nanoribbons.
    Fei Z; Goldflam MD; Wu JS; Dai S; Wagner M; McLeod AS; Liu MK; Post KW; Zhu S; Janssen GC; Fogler MM; Basov DN
    Nano Lett; 2015 Dec; 15(12):8271-6. PubMed ID: 26571096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrabroadband, More than One Order Absorption Enhancement in Graphene with Plasmonic Light Trapping.
    Xiong F; Zhang J; Zhu Z; Yuan X; Qin S
    Sci Rep; 2015 Nov; 5():16998. PubMed ID: 26582477
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced infrared transmission through gold nanoslit arrays via surface plasmons in continuous graphene.
    Liu Z; Aydin K
    Opt Express; 2016 Nov; 24(24):27882-27889. PubMed ID: 27906356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.