These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 30470085)

  • 21. Graphene-assisted multilayer structure employing hybrid surface plasmon and magnetic plasmon for surface-enhanced vibrational spectroscopy.
    Wei W; Chen N; Nong J; Lan G; Wang W; Yi J; Tang L
    Opt Express; 2018 Jun; 26(13):16903-16916. PubMed ID: 30119509
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tunable graphene-based mid-infrared plasmonic wide-angle narrowband perfect absorber.
    Li H; Wang L; Zhai X
    Sci Rep; 2016 Nov; 6():36651. PubMed ID: 27845350
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ultra-broadband light trapping using nanotextured decoupled graphene multilayers.
    Anguita JV; Ahmad M; Haq S; Allam J; Silva SR
    Sci Adv; 2016 Feb; 2(2):e1501238. PubMed ID: 26933686
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ultra-broadband and completely modulated absorption enhancement of monolayer graphene in a near-infrared region.
    Yan Z; Kong L; Tang C; Deng J; Gu P; Chen J; Wang X; Yi Z; Zhu M
    Opt Express; 2022 Sep; 30(19):34787-34796. PubMed ID: 36242483
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure.
    Liu Z; Zhan P; Chen J; Tang C; Yan Z; Chen Z; Wang Z
    Opt Express; 2013 Feb; 21(3):3021-30. PubMed ID: 23481760
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tunable graphene-based plasmonic multispectral and narrowband perfect metamaterial absorbers at the mid-infrared region.
    Meng H; Wang L; Liu G; Xue X; Lin Q; Zhai X
    Appl Opt; 2017 Jul; 56(21):6022-6027. PubMed ID: 29047925
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Near-infrared and mid-infrared semiconductor broadband light emitters.
    Hou CC; Chen HM; Zhang JC; Zhuo N; Huang YQ; Hogg RA; Childs DT; Ning JQ; Wang ZG; Liu FQ; Zhang ZY
    Light Sci Appl; 2018; 7():17170. PubMed ID: 30839527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A high performance, visible to mid-infrared photodetector based on graphene nanoribbons passivated with HfO2.
    Yu X; Dong Z; Liu Y; Liu T; Tao J; Zeng Y; Yang JK; Wang QJ
    Nanoscale; 2016 Jan; 8(1):327-32. PubMed ID: 26610363
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Terahertz and mid-infrared plasmons in three-dimensional nanoporous graphene.
    D'Apuzzo F; Piacenti AR; Giorgianni F; Autore M; Guidi MC; Marcelli A; Schade U; Ito Y; Chen M; Lupi S
    Nat Commun; 2017 Mar; 8():14885. PubMed ID: 28345584
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanism of propagating graphene plasmons excitation for tunable infrared photonic devices.
    Tang L; Wei W; Wei X; Nong J; Du C; Shi H
    Opt Express; 2018 Feb; 26(3):3709-3722. PubMed ID: 29401898
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range.
    Liu JP; Zhai X; Wang LL; Li HJ; Xie F; Xia SX; Shang XJ; Luo X
    Opt Express; 2016 Mar; 24(5):5376-5386. PubMed ID: 29092361
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.
    Chen S; Li G; Lei D; Cheah KW
    Nanoscale; 2013 Oct; 5(19):9129-33. PubMed ID: 23913114
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmon hybridization in pyramidal metamaterials: a route towards ultra-broadband absorption.
    Lobet M; Lard M; Sarrazin M; Deparis O; Henrard L
    Opt Express; 2014 May; 22(10):12678-90. PubMed ID: 24921385
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ultra-narrowband light absorption enhancement of monolayer graphene from waveguide mode.
    Liu B; Yu W; Yan Z; Tang C; Chen J; Gu P; Liu Z; Huang Z
    Opt Express; 2020 Aug; 28(17):24908-24917. PubMed ID: 32907021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoimaging of Low-Loss Plasmonic Waveguide Modes in a Graphene Nanoribbon.
    Zhao W; Li H; Xiao X; Jiang Y; Watanabe K; Taniguchi T; Zettl A; Wang F
    Nano Lett; 2021 Apr; 21(7):3106-3111. PubMed ID: 33728921
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tunable broadband optical field enhancement in graphene-based slot waveguide at infrared frequencies.
    Lu W
    Appl Opt; 2016 Jul; 55(19):5095-101. PubMed ID: 27409196
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Core-shell particles as efficient broadband absorbers in infrared optical range.
    Evlyukhin AB; Nerkararyan KV; Bozhevolnyi SI
    Opt Express; 2019 Jun; 27(13):17474-17481. PubMed ID: 31252706
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graphene plasmonics for surface enhancement near-infrared absorptivity.
    Pan Q; Hong J; Zhang G; Shuai Y; Tan H
    Opt Express; 2017 Jul; 25(14):16400-16408. PubMed ID: 28789144
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Gold nanoparticle mediated graphene plasmon for broadband enhanced infrared spectroscopy.
    Peng L; Zhang L; Yuan J; Chen C; Bao Q; Qiu CW; Peng Z; Zhang K
    Nanotechnology; 2017 Jun; 28(26):264001. PubMed ID: 28525396
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Strong longitudinal coupling of Tamm plasmon polaritons in graphene/DBR/Ag hybrid structure.
    Hu J; Yao E; Xie W; Liu W; Li D; Lu Y; Zhan Q
    Opt Express; 2019 Jun; 27(13):18642-18652. PubMed ID: 31252804
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.