These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 30470116)

  • 1. Informationally symmetrical Bell state preparation and measurement.
    Kim YS; Pramanik T; Cho YW; Yang M; Han SW; Lee SY; Kang MS; Moon S
    Opt Express; 2018 Oct; 26(22):29539-29549. PubMed ID: 30470116
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Generalized quantum interference of correlated photon pairs.
    Kim H; Lee SM; Moon HS
    Sci Rep; 2015 May; 5():9931. PubMed ID: 25951143
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectrally multiplexed Hong-Ou-Mandel interference with weak coherent states.
    Pietx-Casas O; do Amaral GC; Chakraborty T; Berrevoets R; Middelburg T; Slater JA; Tittel W
    Appl Opt; 2023 May; 62(13):3284-3288. PubMed ID: 37132828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two-photon interference of polarization-entangled photons in a Franson interferometer.
    Kim H; Lee SM; Kwon O; Moon HS
    Sci Rep; 2017 Jul; 7(1):5772. PubMed ID: 28720885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated quantum photonic sensor based on Hong-Ou-Mandel interference.
    Basiri-Esfahani S; Myers CR; Armin A; Combes J; Milburn GJ
    Opt Express; 2015 Jun; 23(12):16008-23. PubMed ID: 26193575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synchronization of optical photons for quantum information processing.
    Makino K; Hashimoto Y; Yoshikawa J; Ohdan H; Toyama T; van Loock P; Furusawa A
    Sci Adv; 2016 May; 2(5):e1501772. PubMed ID: 27386536
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Loss-Assisted Anomalous Hong-Ou-Mandel Interference Based on Nonunitary Multilayer Graphene.
    Hong L; Zhang Y; Chen Y; Chen L
    Phys Rev Lett; 2024 Jul; 133(2):023601. PubMed ID: 39073935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum frequency combs and Hong-Ou-Mandel interferometry: the role of spectral phase coherence.
    Lingaraju NB; Lu HH; Seshadri S; Imany P; Leaird DE; Lukens JM; Weiner AM
    Opt Express; 2019 Dec; 27(26):38683-38697. PubMed ID: 31878631
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient quantum key distribution against collective noise using polarization and transverse spatial mode of photons.
    Guo PL; Dong C; He Y; Jing F; He WT; Ren BC; Li CY; Deng FG
    Opt Express; 2020 Feb; 28(4):4611-4624. PubMed ID: 32121695
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Frequency-domain Hong-Ou-Mandel interference with linear optics.
    Imany P; Odele OD; Alshaykh MS; Lu HH; Leaird DE; Weiner AM
    Opt Lett; 2018 Jun; 43(12):2760-2763. PubMed ID: 29905682
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Loss-tolerant state engineering for quantum-enhanced metrology via the reverse Hong-Ou-Mandel effect.
    Ulanov AE; Fedorov IA; Sychev D; Grangier P; Lvovsky AI
    Nat Commun; 2016 Jun; 7():11925. PubMed ID: 27324115
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indistinguishable heralded single photon generation via relative temporal multiplexing of two sources.
    Zhang X; Lee YH; Bell BA; Leong PHW; Rudolph T; Eggleton BJ; Xiong C
    Opt Express; 2017 Oct; 25(21):26067-26075. PubMed ID: 29041268
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental demonstration of free-space two-photon interference.
    Li SL; Yong HL; Li YH; Yang KX; Fu HB; Liu H; Liang H; Ren JG; Cao Y; Yin J; Peng CZ; Pan JW
    Opt Express; 2022 Mar; 30(7):11684-11692. PubMed ID: 35473107
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Frequency-Domain Quantum Interference with Correlated Photons from an Integrated Microresonator.
    Joshi C; Farsi A; Dutt A; Kim BY; Ji X; Zhao Y; Bishop AM; Lipson M; Gaeta AL
    Phys Rev Lett; 2020 Apr; 124(14):143601. PubMed ID: 32338976
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nearly deterministic bell measurement for multiphoton qubits and its application to quantum information processing.
    Lee SW; Park K; Ralph TC; Jeong H
    Phys Rev Lett; 2015 Mar; 114(11):113603. PubMed ID: 25839269
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-photon interference of temporally separated photons.
    Kim H; Lee SM; Moon HS
    Sci Rep; 2016 Oct; 6():34805. PubMed ID: 27708380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Near-infrared Hong-Ou-Mandel interference on a silicon quantum photonic chip.
    Xu X; Xie Z; Zheng J; Liang J; Zhong T; Yu M; Kocaman S; Lo GQ; Kwong DL; Englund DR; Wong FN; Wong CW
    Opt Express; 2013 Feb; 21(4):5014-24. PubMed ID: 23482034
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Hong-Ou-Mandel effect in the context of few-photon scattering.
    Longo P; Cole JH; Busch K
    Opt Express; 2012 May; 20(11):12326-40. PubMed ID: 22714220
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-photon interference of weak coherent laser pulses recalled from separate solid-state quantum memories.
    Jin J; Slater JA; Saglamyurek E; Sinclair N; George M; Ricken R; Oblak D; Sohler W; Tittel W
    Nat Commun; 2013; 4():2386. PubMed ID: 23985479
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bounding the outcome of a two-photon interference measurement using weak coherent states.
    Aragoneses A; Islam NT; Eggleston M; Lezama A; Kim J; Gauthier DJ
    Opt Lett; 2018 Aug; 43(16):3806-3809. PubMed ID: 30106888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.