BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 30470743)

  • 1. Deep learning for universal linear embeddings of nonlinear dynamics.
    Lusch B; Kutz JN; Brunton SL
    Nat Commun; 2018 Nov; 9(1):4950. PubMed ID: 30470743
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Koopman-Based MPC With Learned Dynamics: Hierarchical Neural Network Approach.
    Wang M; Lou X; Wu W; Cui B
    IEEE Trans Neural Netw Learn Syst; 2024 Mar; 35(3):3630-3639. PubMed ID: 35969545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning for Koopman Operator Optimal Control.
    Al-Gabalawy M
    ISA Trans; 2021 Jan; ():. PubMed ID: 33431116
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control.
    Brunton SL; Brunton BW; Proctor JL; Kutz JN
    PLoS One; 2016; 11(2):e0150171. PubMed ID: 26919740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Principal component trajectories for modeling spectrally continuous dynamics as forced linear systems.
    Dylewsky D; Kaiser E; Brunton SL; Kutz JN
    Phys Rev E; 2022 Jan; 105(1-2):015312. PubMed ID: 35193205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Data-driven fault detection and isolation of nonlinear systems using deep learning for Koopman operator.
    Bakhtiaridoust M; Yadegar M; Meskin N
    ISA Trans; 2023 Mar; 134():200-211. PubMed ID: 36127184
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deep learning enhanced dynamic mode decomposition.
    Alford-Lago DJ; Curtis CW; Ihler AT; Issan O
    Chaos; 2022 Mar; 32(3):033116. PubMed ID: 35364851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Koopman operator and its approximations for systems with symmetries.
    Salova A; Emenheiser J; Rupe A; Crutchfield JP; D'Souza RM
    Chaos; 2019 Sep; 29(9):093128. PubMed ID: 31575142
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chaos as an intermittently forced linear system.
    Brunton SL; Brunton BW; Proctor JL; Kaiser E; Kutz JN
    Nat Commun; 2017 May; 8(1):19. PubMed ID: 28559566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Online Learning Koopman Operator for Closed-Loop Electrical Neurostimulation in Epilepsy.
    Liang Z; Luo Z; Liu K; Qiu J; Liu Q
    IEEE J Biomed Health Inform; 2023 Jan; 27(1):492-503. PubMed ID: 36170412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep multi-modal learning for joint linear representation of nonlinear dynamical systems.
    Qian S; Chou CA; Li JS
    Sci Rep; 2022 Jul; 12(1):12807. PubMed ID: 35896569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data-Efficient Reinforcement Learning for Complex Nonlinear Systems.
    Donge VS; Lian B; Lewis FL; Davoudi A
    IEEE Trans Cybern; 2024 Mar; 54(3):1391-1402. PubMed ID: 37906478
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structured time-delay models for dynamical systems with connections to Frenet-Serret frame.
    Hirsh SM; Ichinaga SM; Brunton SL; Nathan Kutz J; Brunton BW
    Proc Math Phys Eng Sci; 2021 Oct; 477(2254):20210097. PubMed ID: 35153585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Extended Dynamic Mode Decomposition with Invertible Dictionary Learning.
    Jin Y; Hou L; Zhong S
    Neural Netw; 2024 May; 173():106177. PubMed ID: 38382398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancing interpretability and generalizability of deep learning-based emulator in three-dimensional lake hydrodynamics using Koopman operator and transfer learning: Demonstrated on the example of lake Zurich.
    Tian W; Zhang Z; Bouffard D; Wu H; Xin K; Gu X; Liao Z
    Water Res; 2024 Feb; 249():120996. PubMed ID: 38103441
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data-driven discovery of coordinates and governing equations.
    Champion K; Lusch B; Kutz JN; Brunton SL
    Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22445-22451. PubMed ID: 31636218
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data-driven modelling of brain activity using neural networks, diffusion maps, and the Koopman operator.
    Gallos IK; Lehmberg D; Dietrich F; Siettos C
    Chaos; 2024 Jan; 34(1):. PubMed ID: 38285718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Learning latent dynamics for partially observed chaotic systems.
    Ouala S; Nguyen D; Drumetz L; Chapron B; Pascual A; Collard F; Gaultier L; Fablet R
    Chaos; 2020 Oct; 30(10):103121. PubMed ID: 33138452
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalizing Koopman Theory to Allow for Inputs and Control.
    Proctory JL; Bruntonz SL; Kutzx JN
    SIAM J Appl Dyn Syst; 2018; 17(1):909-930. PubMed ID: 33584153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep learning for centre manifold reduction and stability analysis in nonlinear systems.
    Ghadami A; Epureanu BI
    Philos Trans A Math Phys Eng Sci; 2022 Aug; 380(2229):20210212. PubMed ID: 35719074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.