BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

238 related articles for article (PubMed ID: 30470864)

  • 1. Presence of Intra-helical Salt-Bridge in Loop E Half-Helix Can Influence the Transport Properties of AQP1 and GlpF Channels: Molecular Dynamics Simulations of In Silico Mutants.
    Jain A; Verma RK; Sankararamakrishnan R
    J Membr Biol; 2019 Feb; 252(1):17-29. PubMed ID: 30470864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intra-helical salt-bridge and helix destabilizing residues within the same helical turn: Role of functionally important loop E half-helix in channel regulation of major intrinsic proteins.
    Verma RK; Prabh ND; Sankararamakrishnan R
    Biochim Biophys Acta; 2015 Jun; 1848(6):1436-49. PubMed ID: 25797519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Major intrinsic protein superfamily: channels with unique structural features and diverse selectivity filters.
    Verma RK; Gupta AB; Sankararamakrishnan R
    Methods Enzymol; 2015; 557():485-520. PubMed ID: 25950979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single amino acid substitutions in the selectivity filter render NbXIP1;1α aquaporin water permeable.
    Ampah-Korsah H; Sonntag Y; Engfors A; Kirscht A; Kjellbom P; Johanson U
    BMC Plant Biol; 2017 Mar; 17(1):61. PubMed ID: 28279171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanism of selectivity in aquaporins and aquaglyceroporins.
    Hub JS; de Groot BL
    Proc Natl Acad Sci U S A; 2008 Jan; 105(4):1198-203. PubMed ID: 18202181
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural determinants of the hydrogen peroxide permeability of aquaporins.
    Almasalmeh A; Krenc D; Wu B; Beitz E
    FEBS J; 2014 Feb; 281(3):647-56. PubMed ID: 24286224
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative simulations of aquaporin family: AQP1, AQPZ, AQP0 and GlpF.
    Hashido M; Ikeguchi M; Kidera A
    FEBS Lett; 2005 Oct; 579(25):5549-52. PubMed ID: 16225876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The arginine-facing amino acid residue of the rat aquaporin 1 constriction determines solute selectivity according to its size and lipophilicity.
    Krenc D; Song J; Almasalmeh A; Wu B; Beitz E
    Mol Membr Biol; 2014; 31(7-8):228-38. PubMed ID: 25341953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aquaglyceroporins, one channel for two molecules.
    Thomas D; Bron P; Ranchy G; Duchesne L; Cavalier A; Rolland JP; Raguénès-Nicol C; Hubert JF; Haase W; Delamarche C
    Biochim Biophys Acta; 2002 Sep; 1555(1-3):181-6. PubMed ID: 12206912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter.
    Wallace IS; Roberts DM
    Plant Physiol; 2004 Jun; 135(2):1059-68. PubMed ID: 15181215
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Homology modeling of major intrinsic proteins in rice, maize and Arabidopsis: comparative analysis of transmembrane helix association and aromatic/arginine selectivity filters.
    Bansal A; Sankararamakrishnan R
    BMC Struct Biol; 2007 Apr; 7():27. PubMed ID: 17445256
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular selectivity in aquaporin channels studied by the 3D-RISM theory.
    Phongphanphanee S; Yoshida N; Hirata F
    J Phys Chem B; 2010 Jun; 114(23):7967-73. PubMed ID: 20496877
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Point mutations in the aromatic/arginine region in aquaporin 1 allow passage of urea, glycerol, ammonia, and protons.
    Beitz E; Wu B; Holm LM; Schultz JE; Zeuthen T
    Proc Natl Acad Sci U S A; 2006 Jan; 103(2):269-74. PubMed ID: 16407156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water permeation across biological membranes: mechanism and dynamics of aquaporin-1 and GlpF.
    de Groot BL; Grubmüller H
    Science; 2001 Dec; 294(5550):2353-7. PubMed ID: 11743202
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of GlpF, a glycerol conducting channel.
    Fu D; Libson A; Stroud R
    Novartis Found Symp; 2002; 245():51-61; discussion 61-5, 165-8. PubMed ID: 12027015
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamics and energetics of permeation through aquaporins. What do we learn from molecular dynamics simulations?
    Hub JS; Grubmüller H; de Groot BL
    Handb Exp Pharmacol; 2009; (190):57-76. PubMed ID: 19096772
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of key residues involved in Si transport by the aquaglyceroporins.
    Carpentier GA; Garneau AP; Marcoux AA; Noël M; Frenette-Cotton R; Isenring P
    J Gen Physiol; 2016 Sep; 148(3):239-51. PubMed ID: 27527099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The 6.9-A structure of GlpF: a basis for homology modeling of the glycerol channel from Escherichia coli.
    Stahlberg H; Braun T; de Groot B; Philippsen A; Borgnia MJ; Agre P; Kühlbrandt W; Engel A
    J Struct Biol; 2000 Nov; 132(2):133-41. PubMed ID: 11162735
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular characterization and structural dynamics of Aquaporin1 from walking catfish in lipid bilayers.
    Behera BK; Parhi J; Dehury B; Rout AK; Khatei A; Devi AL; Mandal SC
    Int J Biol Macromol; 2022 Jan; 196():86-97. PubMed ID: 34914911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of proton conductance by mutations of the selectivity filter of aquaporin-1.
    Li H; Chen H; Steinbronn C; Wu B; Beitz E; Zeuthen T; Voth GA
    J Mol Biol; 2011 Apr; 407(4):607-20. PubMed ID: 21277313
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.