BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 30471164)

  • 1. Remodeling of cholinergic input to the hippocampus after noise exposure and tinnitus induction in Guinea pigs.
    Zhang L; Wu C; Martel DT; West M; Sutton MA; Shore SE
    Hippocampus; 2019 Aug; 29(8):669-682. PubMed ID: 30471164
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noise Exposure Alters Glutamatergic and GABAergic Synaptic Connectivity in the Hippocampus and Its Relevance to Tinnitus.
    Zhang L; Wu C; Martel DT; West M; Sutton MA; Shore SE
    Neural Plast; 2021; 2021():8833087. PubMed ID: 33510780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gap prepulse inhibition and auditory brainstem-evoked potentials as objective measures for tinnitus in guinea pigs.
    Dehmel S; Eisinger D; Shore SE
    Front Syst Neurosci; 2012; 6():42. PubMed ID: 22666193
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gap-induced reductions of evoked potentials in the auditory cortex: A possible objective marker for the presence of tinnitus in animals.
    Berger JI; Owen W; Wilson CA; Hockley A; Coomber B; Palmer AR; Wallace MN
    Brain Res; 2018 Jan; 1679():101-108. PubMed ID: 29191772
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute high-intensity noise induces rapid Arc protein expression but fails to rapidly change GAD expression in amygdala and hippocampus of rats: Effects of treatment with D-cycloserine.
    Kapolowicz MR; Thompson LT
    Hear Res; 2016 Dec; 342():69-79. PubMed ID: 27702572
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gap-induced inhibition of the post-auricular muscle response in humans and guinea pigs.
    Wilson CA; Berger JI; de Boer J; Sereda M; Palmer AR; Hall DA; Wallace MN
    Hear Res; 2019 Mar; 374():13-23. PubMed ID: 30685571
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The gap-startle paradigm for tinnitus screening in animal models: limitations and optimization.
    Lobarinas E; Hayes SH; Allman BL
    Hear Res; 2013 Jan; 295(1-2):150-60. PubMed ID: 22728305
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus.
    Kraus KS; Canlon B
    Hear Res; 2012 Jun; 288(1-2):34-46. PubMed ID: 22440225
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variation in acoustic overstimulation changes tinnitus characteristics.
    Kiefer L; Schauen A; Abendroth S; Gaese BH; Nowotny M
    Neuroscience; 2015 Dec; 310():176-87. PubMed ID: 26365609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Divergent Responses in the Gap Prepulse Inhibition of the Acoustic Startle Reflex in Two Different Guinea Pig Colonies.
    Leggett K; Mendis V; Mulders W
    Int Tinnitus J; 2018 Jun; 22(1):1-9. PubMed ID: 29993210
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Alterations in peripheral and central components of the auditory brainstem response: a neural assay of tinnitus.
    Lowe AS; Walton JP
    PLoS One; 2015; 10(2):e0117228. PubMed ID: 25695496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prolonged Exposure of CBA/Ca Mice to Moderately Loud Noise Can Cause Cochlear Synaptopathy but Not Tinnitus or Hyperacusis as Assessed With the Acoustic Startle Reflex.
    Pienkowski M
    Trends Hear; 2018; 22():2331216518758109. PubMed ID: 29532738
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the perceived sound of trauma-induced tinnitus in gerbils.
    Nowotny M; Remus M; Kössl M; Gaese BH
    J Acoust Soc Am; 2011 Nov; 130(5):2827-34. PubMed ID: 22087911
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Axonal sprouting in the dorsal cochlear nucleus affects gap‑prepulse inhibition following noise exposure.
    Han KH; Mun SK; Sohn S; Piao XY; Park I; Chang M
    Int J Mol Med; 2019 Oct; 44(4):1473-1483. PubMed ID: 31432095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of noise exposure on development of tinnitus and hyperacusis: Prevalence rates 12 months after exposure in middle-aged rats.
    Turner JG; Larsen D
    Hear Res; 2016 Apr; 334():30-6. PubMed ID: 26584761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence of Tinnitus Development Due to Stress: An Experimental Study in Rats.
    Kim MJ; Park SY; Park JM; Yu HJ; Park I; Park SN
    Laryngoscope; 2021 Oct; 131(10):2332-2340. PubMed ID: 34156095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chronic effects of traumatic brain injury on hippocampal vesicular acetylcholine transporter and M2 muscarinic receptor protein in rats.
    Ciallella JR; Yan HQ; Ma X; Wolfson BM; Marion DW; DeKosky ST; Dixon CE
    Exp Neurol; 1998 Jul; 152(1):11-9. PubMed ID: 9682008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glutamatergic Projections to the Cochlear Nucleus are Redistributed in Tinnitus.
    Heeringa AN; Wu C; Chung C; West M; Martel D; Liberman L; Liberman MC; Shore SE
    Neuroscience; 2018 Nov; 391():91-103. PubMed ID: 30236972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of the vesicular acetylcholine transporter increased acetylcholine release in the hippocampus.
    Nagy PM; Aubert I
    Neuroscience; 2012 Aug; 218():1-11. PubMed ID: 22641085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alterations of auditory sensory gating in mice with noise-induced tinnitus treated with nicotine and cannabis extract.
    Ciralli B; Malfatti T; Lima TZ; Silva SRB; Cederroth CR; Leao KE
    J Psychopharmacol; 2023 Nov; 37(11):1116-1131. PubMed ID: 37837354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.