These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 30471462)

  • 21. Nonlinear voxel-based finite element model for strength assessment of healthy and metastatic proximal femurs.
    Sas A; Ohs N; Tanck E; van Lenthe GH
    Bone Rep; 2020 Jun; 12():100263. PubMed ID: 32322609
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mapping anisotropy improves QCT-based finite element estimation of hip strength in pooled stance and side-fall load configurations.
    Panyasantisuk J; Dall'Ara E; Pretterklieber M; Pahr DH; Zysset PK
    Med Eng Phys; 2018 Sep; 59():36-42. PubMed ID: 30131112
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Statistical analysis of the inter-individual variations of the bone shape, volume fraction and fabric and their correlations in the proximal femur.
    Taghizadeh E; Chandran V; Reyes M; Zysset P; Büchler P
    Bone; 2017 Oct; 103():252-261. PubMed ID: 28732775
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A convenient scheme for coupling a finite element curvilinear mesh to a finite element voxel mesh: application to the heart.
    Hopenfeld B
    Biomed Eng Online; 2006 Nov; 5():60. PubMed ID: 17112373
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A new cortical thickness mapping method with application to an in vivo finite element model.
    Kim YH; Kim JE; Eberhardt AW
    Comput Methods Biomech Biomed Engin; 2014; 17(9):997-1001. PubMed ID: 23113651
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimation of 3D shape, internal density and mechanics of proximal femur by combining bone mineral density images with shape and density templates.
    Väänänen SP; Jurvelin JS; Isaksson H
    Biomech Model Mechanobiol; 2012 Jul; 11(6):791-800. PubMed ID: 21986796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Independent measurement of femoral cortical thickness and cortical bone density using clinical CT.
    Treece GM; Gee AH
    Med Image Anal; 2015 Feb; 20(1):249-64. PubMed ID: 25541355
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Multiscale and multimodality computed tomography for cortical bone analysis.
    Ostertag A; Peyrin F; Gouttenoire PJ; Laredo JD; DeVernejoul MC; Cohen Solal M; Chappard C
    Phys Med Biol; 2016 Dec; 61(24):8553-8576. PubMed ID: 27845939
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An analysis of the mechanical parameters used for finite element compression of a high-resolution 3D breast phantom.
    Hsu CM; Palmeri ML; Segars WP; Veress AI; Dobbins JT
    Med Phys; 2011 Oct; 38(10):5756-70. PubMed ID: 21992390
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prediction of fracture callus mechanical properties using micro-CT images and voxel-based finite element analysis.
    Shefelbine SJ; Simon U; Claes L; Gold A; Gabet Y; Bab I; Müller R; Augat P
    Bone; 2005 Mar; 36(3):480-8. PubMed ID: 15777656
    [TBL] [Abstract][Full Text] [Related]  

  • 31. QCT of the proximal femur--which parameters should be measured to discriminate hip fracture?
    Museyko O; Bousson V; Adams J; Laredo J-; Engelke K
    Osteoporos Int; 2016 Mar; 27(3):1137-1147. PubMed ID: 26415934
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The use of sparse CT datasets for auto-generating accurate FE models of the femur and pelvis.
    Shim VB; Pitto RP; Streicher RM; Hunter PJ; Anderson IA
    J Biomech; 2007; 40(1):26-35. PubMed ID: 16427645
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the influence of computed tomography's slice thickness on computer tomography based finite element analyses results.
    Eliyahu L; Yosibash Z; Avivi I; Cohen YC; Ariel G; Sadovnic O; Sternheim A
    Clin Biomech (Bristol, Avon); 2023 Feb; 102():105889. PubMed ID: 36774735
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A comparative study on different methods of automatic mesh generation of human femurs.
    Viceconti M; Bellingeri L; Cristofolini L; Toni A
    Med Eng Phys; 1998 Jan; 20(1):1-10. PubMed ID: 9664280
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Building an effective nonlinear three-dimensional finite-element model of human thoracolumbar spine].
    Zeng ZL; Cheng LM; Zhu R; Wang JJ; Yu Y
    Zhonghua Yi Xue Za Zhi; 2011 Aug; 91(31):2176-80. PubMed ID: 22094033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Prediction of Hip Failure Load: In Vitro Study of 80 Femurs Using Three Imaging Methods and Finite Element Models-The European Fracture Study (EFFECT).
    Pottecher P; Engelke K; Duchemin L; Museyko O; Moser T; Mitton D; Vicaut E; Adams J; Skalli W; Laredo JD; Bousson V
    Radiology; 2016 Sep; 280(3):837-47. PubMed ID: 27077380
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Statistical finite element model for bone shape and biomechanical properties.
    Belenguer Querol L; Büchler P; Rueckert D; Nolte LP; González Ballester MA
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):405-11. PubMed ID: 17354916
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluation of the generality and accuracy of a new mesh morphing procedure for the human femur.
    Grassi L; Hraiech N; Schileo E; Ansaloni M; Rochette M; Viceconti M
    Med Eng Phys; 2011 Jan; 33(1):112-20. PubMed ID: 21036655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Finite element study of human pelvis model in side impact for Chinese adult occupants.
    Ma Z; Lan F; Chen J; Liu W
    Traffic Inj Prev; 2015; 16(4):409-17. PubMed ID: 25133596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Study of stress variations in single-stance and sideways fall using image-based finite element analysis.
    Faisal TR; Luo Y
    Biomed Mater Eng; 2016 May; 27(1):1-14. PubMed ID: 27175463
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.