BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 30471473)

  • 1. Enzymatically triggered shape memory polymers.
    Buffington SL; Paul JE; Ali MM; Macios MM; Mather PT; Henderson JH
    Acta Biomater; 2019 Jan; 84():88-97. PubMed ID: 30471473
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cell-Responsive Shape Memory Polymers.
    Chen J; Hamilton LE; Mather PT; Henderson JH
    ACS Biomater Sci Eng; 2022 Jul; 8(7):2960-2969. PubMed ID: 35686739
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermally and Photothermally Triggered Cytocompatible Triple-Shape-Memory Polymer Based on a Graphene Oxide-Containing Poly(ε-caprolactone) and Acrylate Composite.
    Chen J; Sun S; Macios MM; Oguntade E; Narkar AR; Mather PT; Henderson JH
    ACS Appl Mater Interfaces; 2023 Oct; 15(44):50962-72. PubMed ID: 37902447
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvent-free synthesis of biostable segmented polyurethane shape memory polymers for biomedical applications.
    Ramezani M; Getya D; Gitsov I; Monroe MBB
    J Mater Chem B; 2024 Jan; 12(5):1217-1231. PubMed ID: 38168979
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A biodegradable functional water-responsive shape memory polymer for biomedical applications.
    Guo Y; Lv Z; Huo Y; Sun L; Chen S; Liu Z; He C; Bi X; Fan X; You Z
    J Mater Chem B; 2019 Jan; 7(1):123-132. PubMed ID: 32254956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.
    Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX
    Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.
    Boire TC; Gupta MK; Zachman AL; Lee SH; Balikov DA; Kim K; Bellan LM; Sung HJ
    Acta Biomater; 2015 Sep; 24():53-63. PubMed ID: 26072363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanically robust enzymatically degradable shape memory polyurethane urea with a rapid recovery response induced by NIR.
    Li X; Liu W; Li Y; Lan W; Zhao D; Wu H; Feng Y; He X; Li Z; Li J; Luo F; Tan H
    J Mater Chem B; 2020 Jun; 8(23):5117-5130. PubMed ID: 32412029
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Method for preparation, programming, and characterization of miniaturized particulate shape-memory polymer matrices.
    Wischke C; Lendlein A
    Langmuir; 2014 Mar; 30(10):2820-7. PubMed ID: 24564390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape-Memory Polymers Hallmarks and Their Biomedical Applications in the Form of Nanofibers.
    Pisani S; Genta I; Modena T; Dorati R; Benazzo M; Conti B
    Int J Mol Sci; 2022 Jan; 23(3):. PubMed ID: 35163218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biodegradable shape memory polymer foams with appropriate thermal properties for hemostatic applications.
    Jang LK; Fletcher GK; Monroe MBB; Maitland DJ
    J Biomed Mater Res A; 2020 Jun; 108(6):1281-1294. PubMed ID: 32061006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reprint of: Pendant allyl crosslinking as a tunable shape memory actuator for vascular applications.
    Boire TC; Gupta MK; Zachman AL; Lee SH; Balikov DA; Kim K; Bellan LM; Sung HJ
    Acta Biomater; 2016 Apr; 34():73-83. PubMed ID: 27018333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bending shape memory behaviours of carbon fibre reinforced polyurethane-type shape memory polymer composites under relatively small deformation: Characterisation and computational simulation.
    Cheng X; Chen Y; Dai S; Bilek MMM; Bao S; Ye L
    J Mech Behav Biomed Mater; 2019 Dec; 100():103372. PubMed ID: 31369958
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water-Triggered Stiffening of Shape-Memory Polyurethanes Composed of Hard Backbone Dangling PEG Soft Segments.
    Liu W; Wang A; Yang R; Wu H; Shao S; Chen J; Ma Y; Li Z; Wang Y; He X; Li J; Tan H; Fu Q
    Adv Mater; 2022 Nov; 34(46):e2201914. PubMed ID: 35502474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable shape-memory polymers using polycaprolactone and isosorbide based polyurethane blends.
    Joo YS; Cha JR; Gong MS
    Mater Sci Eng C Mater Biol Appl; 2018 Oct; 91():426-435. PubMed ID: 30033273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temperature triggered shape memory effect of transpolyisoprene-based polymer.
    Tsukada G; Tokuda M; Torii M
    J Endod; 2014 Oct; 40(10):1658-62. PubMed ID: 25260740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polyurethane Microparticles for Stimuli Response and Reduced Oxidative Degradation in Highly Porous Shape Memory Polymers.
    Weems AC; Li W; Maitland DJ; Calle LM
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):32998-33009. PubMed ID: 30184426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable shape-memory block co-polymers for fast self-expandable stents.
    Xue L; Dai S; Li Z
    Biomaterials; 2010 Nov; 31(32):8132-40. PubMed ID: 20723973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shape memory polyurethanes with oxidation-induced degradation: In vivo and in vitro correlations for endovascular material applications.
    Weems AC; Wacker KT; Carrow JK; Boyle AJ; Maitland DJ
    Acta Biomater; 2017 Sep; 59():33-44. PubMed ID: 28647624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong electroactive biodegradable shape memory polymer networks based on star-shaped polylactide and aniline trimer for bone tissue engineering.
    Xie M; Wang L; Ge J; Guo B; Ma PX
    ACS Appl Mater Interfaces; 2015 Apr; 7(12):6772-81. PubMed ID: 25742188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.