BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 30471573)

  • 1. Biochar amendment to further reduce methylmercury accumulation in rice grown in selenium-amended paddy soil.
    Wang Y; Dang F; Zheng X; Zhong H
    J Hazard Mater; 2019 Mar; 365():590-596. PubMed ID: 30471573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biochar amendment reduced methylmercury accumulation in rice plants.
    Shu R; Wang Y; Zhong H
    J Hazard Mater; 2016 Aug; 313():1-8. PubMed ID: 27045620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selenium-amended biochar mitigates inorganic mercury and methylmercury accumulation in rice (Oryza sativa L.).
    Lv W; Zhan T; Abdelhafiz MA; Feng X; Meng B
    Environ Pollut; 2021 Dec; 291():118259. PubMed ID: 34600068
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selenium inhibits sulfate-mediated methylmercury production in rice paddy soil.
    Wang YJ; Dang F; Zhao JT; Zhong H
    Environ Pollut; 2016 Jun; 213():232-239. PubMed ID: 26901075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochar and nitrate reduce risk of methylmercury in soils under straw amendment.
    Zhang Y; Liu YR; Lei P; Wang YJ; Zhong H
    Sci Total Environ; 2018 Apr; 619-620():384-390. PubMed ID: 29156259
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biochar amendment mitigates the health risks of dietary methylmercury exposure from rice consumption in mercury-contaminated areas.
    Wang Y; Sun Y; He T; Deng H; Wang Z; Wang J; Zheng X; Zhou L; Zhong H
    Environ Pollut; 2020 Dec; 267():115547. PubMed ID: 33254602
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of sulfur-rich biochar amendment on microbial methylation of mercury in rhizosphere paddy soil and methylmercury accumulation in rice.
    Hu H; Xi B; Tan W
    Environ Pollut; 2021 Oct; 286():117290. PubMed ID: 33984776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of methylmercury accumulation in wheat and rice grown in straw-amended paddy soil.
    Wang Y; Chen Z; Wu Y; Zhong H
    Sci Total Environ; 2019 Dec; 697():134143. PubMed ID: 31476499
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Effects of Chitosan-modified Biochar on Formation of Methylmercury in Paddy Soils and Its Accumulation in Rice].
    Yang XL; Wang MX; Xu GM; Wang DY
    Huan Jing Ke Xue; 2021 Mar; 42(3):1191-1196. PubMed ID: 33742916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selenium decreases methylmercury and increases nutritional elements in rice growing in mercury-contaminated farmland.
    Li Y; Hu W; Zhao J; Chen Q; Wang W; Li B; Li YF
    Ecotoxicol Environ Saf; 2019 Oct; 182():109447. PubMed ID: 31325809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Response of methylmercury in paddy soil and paddy rice to pristine biochar: A meta-analysis and environmental implications.
    Tian X; Chai G; Xie Q; Li G
    Ecotoxicol Environ Saf; 2023 Jun; 257():114933. PubMed ID: 37099962
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of varying amounts of different biochars on mercury methylation in paddy soils and methylmercury accumulation in rice (Oryza sativa L.).
    Wang Y; Chen L; Chen Y; Xue Y; Liu G; Zheng X; Zhou L; Zhong H
    Sci Total Environ; 2023 May; 874():162459. PubMed ID: 36871735
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selenium- and chitosan-modified biochars reduce methylmercury contents in rice seeds with recruiting Bacillus to inhibit methylmercury production.
    Guo P; Du H; Zhao W; Xiong B; Wang M; He M; Flemetakis E; Hänsch R; Ma M; Rennenberg H; Wang D
    J Hazard Mater; 2024 Mar; 465():133236. PubMed ID: 38141298
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of sewage sludge biochar in methylmercury formation and accumulation in rice.
    Zhang J; Wu S; Xu Z; Wang M; Man YB; Christie P; Liang P; Shan S; Wong MH
    Chemosphere; 2019 Mar; 218():527-533. PubMed ID: 30500713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of sulfate and selenite on mercury methylation in a mercury-contaminated rice paddy soil under anoxic conditions.
    Wang Y; Dang F; Zhong H; Wei Z; Li P
    Environ Sci Pollut Res Int; 2016 Mar; 23(5):4602-8. PubMed ID: 26520099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitigation of rice cadmium (Cd) accumulation by joint application of organic amendments and selenium (Se) in high-Cd-contaminated soils.
    Liu N; Jiang Z; Li X; Liu H; Li N; Wei S
    Chemosphere; 2020 Feb; 241():125106. PubMed ID: 31683428
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An assessment of emergy, energy, and cost-benefits of grain production over 6 years following a biochar amendment in a rice paddy from China.
    Wang L; Li L; Cheng K; Ji C; Yue Q; Bian R; Pan G
    Environ Sci Pollut Res Int; 2018 Apr; 25(10):9683-9696. PubMed ID: 29368196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanistic understanding of MeHg-Se antagonism in soil-rice systems: the key role of antagonism in soil.
    Wang Y; Dang F; Evans RD; Zhong H; Zhao J; Zhou D
    Sci Rep; 2016 Jan; 6():19477. PubMed ID: 26778218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic fertilizer amendment increases methylmercury accumulation in rice plants.
    Li Y; He X; Wang Y; Guan J; Guo J; Xu B; Chen YH; Wang G
    Chemosphere; 2020 Jun; 249():126166. PubMed ID: 32062560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biochar-impacted sulfur cycling affects methylmercury phytoavailability in soils under different redox conditions.
    Wang Y; Zhang Y; Ok YS; Jiang T; Liu P; Shu R; Wang D; Cao X; Zhong H
    J Hazard Mater; 2021 Apr; 407():124397. PubMed ID: 33183839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.