BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 30471690)

  • 21. Single Molecule FRET: A Powerful Tool to Study Intrinsically Disordered Proteins.
    LeBlanc SJ; Kulkarni P; Weninger KR
    Biomolecules; 2018 Nov; 8(4):. PubMed ID: 30413085
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Integrated view of internal friction in unfolded proteins from single-molecule FRET, contact quenching, theory, and simulations.
    Soranno A; Holla A; Dingfelder F; Nettels D; Makarov DE; Schuler B
    Proc Natl Acad Sci U S A; 2017 Mar; 114(10):E1833-E1839. PubMed ID: 28223518
    [TBL] [Abstract][Full Text] [Related]  

  • 23. From dilute to concentrated solutions of intrinsically disordered proteins: Interpretation and analysis of collected data.
    Lenton S; Fagerberg E; Tully M; Skepö M
    Methods Enzymol; 2023; 678():299-330. PubMed ID: 36641212
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Calibrated Langevin-dynamics simulations of intrinsically disordered proteins.
    Smith WW; Ho PY; O'Hern CS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042709. PubMed ID: 25375525
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Measuring Interactions Between Tau and Aggregation Inducers with Single-Molecule Förster Resonance Energy Transfer.
    Wickramasinghe SP; Rhoades E
    Methods Mol Biol; 2020; 2141():755-775. PubMed ID: 32696388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Understanding disordered and unfolded proteins using single-molecule FRET and polymer theory.
    Hofmann H
    Methods Appl Fluoresc; 2016 Nov; 4(4):042003. PubMed ID: 28192291
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Insights into the conformations and dynamics of intrinsically disordered proteins using single-molecule fluorescence.
    Gomes GN; Gradinaru CC
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt B):1696-1706. PubMed ID: 28625737
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Single-molecule spectroscopy reveals polymer effects of disordered proteins in crowded environments.
    Soranno A; Koenig I; Borgia MB; Hofmann H; Zosel F; Nettels D; Schuler B
    Proc Natl Acad Sci U S A; 2014 Apr; 111(13):4874-9. PubMed ID: 24639500
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Dimension conversion and scaling of disordered protein chains.
    Li M; Sun T; Jin F; Yu D; Liu Z
    Mol Biosyst; 2016 Aug; 12(9):2932-40. PubMed ID: 27440558
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analyzing Ensembles of Amyloid Proteins Using Bayesian Statistics.
    Gurry T; Fisher CK; Schmidt M; Stultz CM
    Methods Mol Biol; 2016; 1345():269-80. PubMed ID: 26453218
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The combined force field-sampling problem in simulations of disordered amyloid-β peptides.
    Lincoff J; Sasmal S; Head-Gordon T
    J Chem Phys; 2019 Mar; 150(10):104108. PubMed ID: 30876367
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Quantitative Single-Molecule Three-Color Förster Resonance Energy Transfer by Photon Distribution Analysis.
    Barth A; Voith von Voithenberg L; Lamb DC
    J Phys Chem B; 2019 Aug; 123(32):6901-6916. PubMed ID: 31117611
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Conformational Heterogeneity and FRET Data Interpretation for Dimensions of Unfolded Proteins.
    Song J; Gomes GN; Shi T; Gradinaru CC; Chan HS
    Biophys J; 2017 Sep; 113(5):1012-1024. PubMed ID: 28877485
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Atomistic Modeling of Intrinsically Disordered Proteins Under Polyethylene Glycol Crowding: Quantitative Comparison with Experimental Data and Implication of Protein-Crowder Attraction.
    Nguemaha V; Qin S; Zhou HX
    J Phys Chem B; 2018 Dec; 122(49):11262-11270. PubMed ID: 30230839
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeting the Intrinsically Disordered Proteome Using Small-Molecule Ligands.
    Wójcik S; Birol M; Rhoades E; Miranker AD; Levine ZA
    Methods Enzymol; 2018; 611():703-734. PubMed ID: 30471705
    [TBL] [Abstract][Full Text] [Related]  

  • 36. pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins.
    Varadi M; Kosol S; Lebrun P; Valentini E; Blackledge M; Dunker AK; Felli IC; Forman-Kay JD; Kriwacki RW; Pierattelli R; Sussman J; Svergun DI; Uversky VN; Vendruscolo M; Wishart D; Wright PE; Tompa P
    Nucleic Acids Res; 2014 Jan; 42(Database issue):D326-35. PubMed ID: 24174539
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Probing Differential Binding Mechanisms of Phenylalanine-Glycine-Rich Nucleoporins by Single-Molecule FRET.
    Tan PS; Lemke EA
    Methods Enzymol; 2018; 611():327-346. PubMed ID: 30471692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Single-molecule spectroscopy of unfolded proteins and chaperonin action.
    Hofmann H
    Biol Chem; 2014 Jul; 395(7-8):689-98. PubMed ID: 24620016
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular Dynamics Simulations Combined with Nuclear Magnetic Resonance and/or Small-Angle X-ray Scattering Data for Characterizing Intrinsically Disordered Protein Conformational Ensembles.
    Chan-Yao-Chong M; Durand D; Ha-Duong T
    J Chem Inf Model; 2019 May; 59(5):1743-1758. PubMed ID: 30840442
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Integrating single-molecule spectroscopy and simulations for the study of intrinsically disordered proteins.
    Alston JJ; Soranno A; Holehouse AS
    Methods; 2021 Sep; 193():116-135. PubMed ID: 33831596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.