These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 30471694)

  • 1. Building, Characterization, and Applications of Cuvette-FCS in Denaturant-Induced Expansion of Globular and Disordered Proteins.
    Sil TB; Sahoo B; Garai K
    Methods Enzymol; 2018; 611():383-421. PubMed ID: 30471694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Fluorescence Correlation Spectrometer for Measurements in Cuvettes.
    Sahoo B; Sil TB; Karmakar B; Garai K
    Biophys J; 2018 Aug; 115(3):455-466. PubMed ID: 30089243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stopped-Flow Kinetic Techniques for Studying Binding Reactions of Intrinsically Disordered Proteins.
    Crabtree MD; Shammas SL
    Methods Enzymol; 2018; 611():423-457. PubMed ID: 30471695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using fluorescence correlation spectroscopy to study conformational changes in denatured proteins.
    Sherman E; Itkin A; Kuttner YY; Rhoades E; Amir D; Haas E; Haran G
    Biophys J; 2008 Jun; 94(12):4819-27. PubMed ID: 18326651
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The biophysics of disordered proteins from the point of view of single-molecule fluorescence spectroscopy.
    Cubuk J; Stuchell-Brereton MD; Soranno A
    Essays Biochem; 2022 Dec; 66(7):875-890. PubMed ID: 36416865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing the Action of Chemical Denaturant on an Intrinsically Disordered Protein by Simulation and Experiment.
    Zheng W; Borgia A; Buholzer K; Grishaev A; Schuler B; Best RB
    J Am Chem Soc; 2016 Sep; 138(36):11702-13. PubMed ID: 27583687
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diversity of hydrodynamic radii of intrinsically disordered proteins.
    Białobrzewski MK; Klepka BP; Michaś A; Cieplak-Rotowska MK; Staszałek Z; Niedźwiecka A
    Eur Biophys J; 2023 Oct; 52(6-7):607-618. PubMed ID: 37831084
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measuring unfolding of proteins in the presence of denaturant using fluorescence correlation spectroscopy.
    Chattopadhyay K; Saffarian S; Elson EL; Frieden C
    Biophys J; 2005 Feb; 88(2):1413-22. PubMed ID: 15556973
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Perspective: Chain dynamics of unfolded and intrinsically disordered proteins from nanosecond fluorescence correlation spectroscopy combined with single-molecule FRET.
    Schuler B
    J Chem Phys; 2018 Jul; 149(1):010901. PubMed ID: 29981536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence correlation spectroscopy: molecular complexing in solution and in living cells.
    Bulseco DA; Wolf DE
    Methods Cell Biol; 2013; 114():489-524. PubMed ID: 23931520
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protein structural changes characterized by high-pressure, pulsed field gradient diffusion NMR spectroscopy.
    Ramanujam V; Alderson TR; Pritišanac I; Ying J; Bax A
    J Magn Reson; 2020 Mar; 312():106701. PubMed ID: 32113145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantifying Protection in Disordered Proteins Using Millisecond Hydrogen Exchange-Mass Spectrometry and Peptic Reference Peptides.
    Al-Naqshabandi MA; Weis DD
    Biochemistry; 2017 Aug; 56(31):4064-4072. PubMed ID: 28675294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Efficient Method for Estimating the Hydrodynamic Radius of Disordered Protein Conformations.
    Nygaard M; Kragelund BB; Papaleo E; Lindorff-Larsen K
    Biophys J; 2017 Aug; 113(3):550-557. PubMed ID: 28793210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Imaging fluorescence (cross-) correlation spectroscopy in live cells and organisms.
    Krieger JW; Singh AP; Bag N; Garbe CS; Saunders TE; Langowski J; Wohland T
    Nat Protoc; 2015 Dec; 10(12):1948-74. PubMed ID: 26540588
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature effects on the hydrodynamic radius of the intrinsically disordered N-terminal region of the p53 protein.
    Langridge TD; Tarver MJ; Whitten ST
    Proteins; 2014 Apr; 82(4):668-78. PubMed ID: 24150971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single-molecule fluorescence studies of intrinsically disordered proteins.
    Ferreon AC; Moran CR; Gambin Y; Deniz AA
    Methods Enzymol; 2010; 472():179-204. PubMed ID: 20580965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HullRad: Fast Calculations of Folded and Disordered Protein and Nucleic Acid Hydrodynamic Properties.
    Fleming PJ; Fleming KG
    Biophys J; 2018 Feb; 114(4):856-869. PubMed ID: 29490246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Translational diffusion of unfolded and intrinsically disordered proteins.
    Nesmelova IV; Melnikova DL; Ranjan V; Skirda VD
    Prog Mol Biol Transl Sci; 2019; 166():85-108. PubMed ID: 31521238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of models for calculating the hydrodynamic radius of intrinsically disordered proteins.
    Pesce F; Newcombe EA; Seiffert P; Tranchant EE; Olsen JG; Grace CR; Kragelund BB; Lindorff-Larsen K
    Biophys J; 2023 Jan; 122(2):310-321. PubMed ID: 36518077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Loop formation and translational diffusion of intrinsically disordered proteins.
    Mühle S; Zhou M; Ghosh A; Enderlein J
    Phys Rev E; 2019 Nov; 100(5-1):052405. PubMed ID: 31869980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.