These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 30471734)

  • 1. Lsi1 modulates the antioxidant capacity of rice and protects against ultraviolet-B radiation.
    Fang C; Li L; Zhang P; Wang D; Yang L; Reza BM; Lin W
    Plant Sci; 2019 Jan; 278():96-106. PubMed ID: 30471734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overexpression of Lsi1 in cold-sensitive rice mediates transcriptional regulatory networks and enhances resistance to chilling stress.
    Fang C; Zhang P; Jian X; Chen W; Lin H; Li Y; Lin W
    Plant Sci; 2017 Sep; 262():115-126. PubMed ID: 28716407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Screening and Expression of a Silicon Transporter Gene
    Sahebi M; Hanafi MM; Rafii MY; Azizi P; Abiri R; Kalhori N; Atabaki N
    Biomed Res Int; 2017; 2017():9064129. PubMed ID: 28191468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methyl-CpG binding domain protein acts to regulate the repair of cyclobutane pyrimidine dimers on rice DNA.
    Fang C; Chen W; Li C; Jian X; Li Y; Lin H; Lin W
    Sci Rep; 2016 Oct; 6():34569. PubMed ID: 27694845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Serine hydroxymethyltransferase localised in the endoplasmic reticulum plays a role in scavenging H
    Fang C; Zhang P; Li L; Yang L; Mu D; Yan X; Li Z; Lin W
    BMC Plant Biol; 2020 May; 20(1):236. PubMed ID: 32456700
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The imprints of the high light and UV-B stresses in Oryza sativa L. 'Kanchana' seedlings are differentially modulated.
    Faseela P; Puthur JT
    J Photochem Photobiol B; 2018 Jan; 178():551-559. PubMed ID: 29253814
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial distribution and temporal variation of the rice silicon transporter Lsi1.
    Yamaji N; Ma JF
    Plant Physiol; 2007 Mar; 143(3):1306-13. PubMed ID: 17259286
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deciphering the Molecular Mechanisms of Chilling Tolerance in
    Li Z; Umar Khan M; Yan X; Mu D; Xie Y; Waqas M; Wu X; Letuma P; Fang C; Lin W
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35563058
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of the rice aquaporin Lsi1 in arsenite efflux from roots.
    Zhao FJ; Ago Y; Mitani N; Li RY; Su YH; Yamaji N; McGrath SP; Ma JF
    New Phytol; 2010 Apr; 186(2):392-9. PubMed ID: 20163552
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exogenous silicon enhances resistance to 1,2,4-trichlorobenzene in rice.
    Niu Y; Liu L; Wang F; Liu X; Huang Z; Zhao H; Qi B; Zhang G
    Sci Total Environ; 2022 Nov; 845():157248. PubMed ID: 35820528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological and molecular characterization of Si uptake in wild rice species.
    Mitani-Ueno N; Ogai H; Yamaji N; Ma JF
    Physiol Plant; 2014 Jul; 151(3):200-7. PubMed ID: 24320720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes in rice allelopathy and rhizosphere microflora by inhibiting rice phenylalanine ammonia-lyase gene expression.
    Fang C; Zhuang Y; Xu T; Li Y; Li Y; Lin W
    J Chem Ecol; 2013 Feb; 39(2):204-12. PubMed ID: 23385369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silicon enhances the submergence tolerance of rice by regulating quiescence strategy and alleviating oxidative damage.
    Pan T; Wang L; Peng Z; Tian J; Cai K
    Plant Physiol Biochem; 2022 Jul; 182():124-132. PubMed ID: 35490638
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functions and transport of silicon in plants.
    Ma JF; Yamaji N
    Cell Mol Life Sci; 2008 Oct; 65(19):3049-57. PubMed ID: 18560761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue-specific deposition, speciation and transport of antimony in rice.
    Huang H; Yamaji N; Ma JF
    Plant Physiol; 2024 Jul; 195(4):2683-2693. PubMed ID: 38761402
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of active silicon uptake by rice on 29Si fractionation in various plant parts.
    Köster JR; Bol R; Leng MJ; Parker AG; Sloane HJ; Ma JF
    Rapid Commun Mass Spectrom; 2009 Aug; 23(16):2398-402. PubMed ID: 19603477
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genotypic difference in silicon uptake and expression of silicon transporter genes in rice.
    Ma JF; Yamaji N; Tamai K; Mitani N
    Plant Physiol; 2007 Nov; 145(3):919-24. PubMed ID: 17905867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. MicroRNA166 Modulates Cadmium Tolerance and Accumulation in Rice.
    Ding Y; Gong S; Wang Y; Wang F; Bao H; Sun J; Cai C; Yi K; Chen Z; Zhu C
    Plant Physiol; 2018 Aug; 177(4):1691-1703. PubMed ID: 29925586
    [TBL] [Abstract][Full Text] [Related]  

  • 19. OsWRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice.
    Dai X; Wang Y; Zhang WH
    J Exp Bot; 2016 Feb; 67(3):947-60. PubMed ID: 26663563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2.
    Qiao B; Zhang Q; Liu D; Wang H; Yin J; Wang R; He M; Cui M; Shang Z; Wang D; Zhu Z
    J Exp Bot; 2015 Sep; 66(19):5853-66. PubMed ID: 26085678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.