These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 30472)

  • 1. Further evidence suggesting that the slow phase in protein unfolding and refolding is due to proline isomerization: a kinetic study of carp parvalbumins.
    Lin LN; Brandts JF
    Biochemistry; 1978 Sep; 17(19):4102-10. PubMed ID: 30472
    [No Abstract]   [Full Text] [Related]  

  • 2. Effects of proline mutations on the unfolding and refolding of human lysozyme: the slow refolding kinetic phase does not result from proline cis-trans isomerization.
    Herning T; Yutani K; Taniyama Y; Kikuchi M
    Biochemistry; 1991 Oct; 30(41):9882-91. PubMed ID: 1911779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unfolding and refolding occur much faster for a proline-free proteins than for most proline-containing proteins.
    Brandts JF; Brennan M; Lung-Nan Lin
    Proc Natl Acad Sci U S A; 1977 Oct; 74(10):4178-81. PubMed ID: 22075
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinetic studies of the unfolding-refolding of horse muscle phosphoglycerate kinase induced by guanidine hydrochloride.
    Betton JM; Desmadril M; Mitraki A; Yon JM
    Biochemistry; 1985 Aug; 24(17):4570-7. PubMed ID: 4063338
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of proline mutations on the folding of staphylococcal nuclease.
    Maki K; Ikura T; Hayano T; Takahashi N; Kuwajima K
    Biochemistry; 1999 Feb; 38(7):2213-23. PubMed ID: 10026306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic models for unfolding and refolding of ribonuclease T1 with substitution of cis-proline 39 by alanine.
    Mayr LM; Schmid FX
    J Mol Biol; 1993 Jun; 231(3):913-26. PubMed ID: 8515460
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Replacement of proline with valine does not remove an apparent proline isomerization-dependent folding event in CRABP I.
    Burns-Hamuro LL; Dalessio PM; Ropson IJ
    Protein Sci; 2004 Jun; 13(6):1670-6. PubMed ID: 15152096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for involvement of proline cis-trans isomerization in the slow unfolding reaction of RNase A.
    Garel JR
    Proc Natl Acad Sci U S A; 1980 Feb; 77(2):795-8. PubMed ID: 6928678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equilibrium and kinetic analyses of unfolding and refolding for the conserved proline mutants of tryptophan synthase alpha subunit.
    Ogasahara K; Yutani K
    Biochemistry; 1997 Jan; 36(4):932-40. PubMed ID: 9020793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosyl interactions in the folding and unfolding of bovine pancreatic ribonuclease A: a study of tyrosine-to-phenylalanine mutants.
    Juminaga D; Wedemeyer WJ; Garduño-Júarez R; McDonald MA; Scheraga HA
    Biochemistry; 1997 Aug; 36(33):10131-45. PubMed ID: 9254610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two slow stages in refolding of bovine carbonic anhydrase B are due to proline isomerization.
    Semisotnov GV; Uversky VN; Sokolovsky IV; Gutin AM; Razgulyaev OI; Rodionova NA
    J Mol Biol; 1990 Jun; 213(3):561-8. PubMed ID: 2112610
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the folding and unfolding reactions of single-chain monellin: evidence for multiple intermediates and competing pathways.
    Patra AK; Udgaonkar JB
    Biochemistry; 2007 Oct; 46(42):11727-43. PubMed ID: 17902706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of some physico-chemical properties of muscular parvalbumins by means of the luminescence of their phenylalanyl residues.
    Burstein EA; Permyakov EA; Emelyanenko VI; Bushueva ; Pechère JF
    Biochim Biophys Acta; 1975 Jul; 400(1):1-16. PubMed ID: 238652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic folding and cis/trans prolyl isomerization of staphylococcal nuclease. A study by stopped-flow absorption, stopped-flow circular dichroism, and molecular dynamics simulations.
    Ikura T; Tsurupa GP; Kuwajima K
    Biochemistry; 1997 May; 36(21):6529-38. PubMed ID: 9174370
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic and thermodynamic studies of the folding/unfolding of a tryptophan-containing mutant of ribonuclease A.
    Sendak RA; Rothwarf DM; Wedemeyer WJ; Houry WA; Scheraga HA
    Biochemistry; 1996 Oct; 35(39):12978-92. PubMed ID: 8841145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secondary structure formation precedes tertiary structure in the refolding of ribonuclease A.
    Lustig B; Fink AL
    Biochim Biophys Acta; 1992 May; 1121(1-2):229-33. PubMed ID: 1599946
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Isolation of the calcium-binding domain of carp parvalbumin].
    Maksimov EE; Mitin IuV
    Mol Biol (Mosk); 1977; 11(4):807-10. PubMed ID: 618324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of ligand binding in the kinetic folding mechanism of human p21(H-ras) protein.
    Zhang J; Matthews CR
    Biochemistry; 1998 Oct; 37(42):14891-9. PubMed ID: 9778365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unfolding and refolding of the constant fragment of the immunoglobulin light chain.
    Goto Y; Hamaguchi K
    J Mol Biol; 1982 Apr; 156(4):891-910. PubMed ID: 6811753
    [No Abstract]   [Full Text] [Related]  

  • 20. RhNGF slow unfolding is not due to proline isomerization: possibility of a cystine knot loop-threading mechanism.
    De Young LR; Burton LE; Liu J; Powell MF; Schmelzer CH; Skelton NJ
    Protein Sci; 1996 Aug; 5(8):1554-66. PubMed ID: 8844846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.