These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 30472000)

  • 1. Pseudogenization and Resurrection of a Speciation Gene.
    Esfeld K; Berardi AE; Moser M; Bossolini E; Freitas L; Kuhlemeier C
    Curr Biol; 2018 Dec; 28(23):3776-3786.e7. PubMed ID: 30472000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Asymmetric effects of loss and gain of a floral trait on pollinator preference.
    Dell'Olivo A; Kuhlemeier C
    Evolution; 2013 Oct; 67(10):3023-31. PubMed ID: 24094351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex evolution of novel red floral color in Petunia.
    Berardi AE; Esfeld K; Jäggi L; Mandel T; Cannarozzi GM; Kuhlemeier C
    Plant Cell; 2021 Aug; 33(7):2273-2295. PubMed ID: 33871652
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Single gene-mediated shift in pollinator attraction in Petunia.
    Hoballah ME; Gübitz T; Stuurman J; Broger L; Barone M; Mandel T; Dell'Olivo A; Arnold M; Kuhlemeier C
    Plant Cell; 2007 Mar; 19(3):779-90. PubMed ID: 17337627
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single gene mutation in a plant MYB transcription factor causes a major shift in pollinator preference.
    Lüthi MN; Berardi AE; Mandel T; Freitas LB; Kuhlemeier C
    Curr Biol; 2022 Dec; 32(24):5295-5308.e5. PubMed ID: 36473466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pollinator choice in Petunia depends on two major genetic Loci for floral scent production.
    Klahre U; Gurba A; Hermann K; Saxenhofer M; Bossolini E; Guerin PM; Kuhlemeier C
    Curr Biol; 2011 May; 21(9):730-9. PubMed ID: 21497087
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gain and Loss of Floral Scent Production through Changes in Structural Genes during Pollinator-Mediated Speciation.
    Amrad A; Moser M; Mandel T; de Vries M; Schuurink RC; Freitas L; Kuhlemeier C
    Curr Biol; 2016 Dec; 26(24):3303-3312. PubMed ID: 27916524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of transcription factors controlling floral morphology in wild Petunia species with contrasting pollination syndromes.
    Yarahmadov T; Robinson S; Hanemian M; Pulver V; Kuhlemeier C
    Plant J; 2020 Oct; 104(2):289-301. PubMed ID: 32780443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The genetic control of flower-pollinator specificity.
    Yuan YW; Byers KJ; Bradshaw HD
    Curr Opin Plant Biol; 2013 Aug; 16(4):422-8. PubMed ID: 23763819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular analysis of the anthocyanin2 gene of petunia and its role in the evolution of flower color.
    Quattrocchio F; Wing J; van der Woude K; Souer E; de Vetten N; Mol J; Koes R
    Plant Cell; 1999 Aug; 11(8):1433-44. PubMed ID: 10449578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A chimeric repressor of petunia PH4 R2R3-MYB family transcription factor generates margined flowers in torenia.
    Kasajima I; Sasaki K
    Plant Signal Behav; 2016 May; 11(5):e1177693. PubMed ID: 27089475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MYB-FL controls gain and loss of floral UV absorbance, a key trait affecting pollinator preference and reproductive isolation.
    Sheehan H; Moser M; Klahre U; Esfeld K; Dell'Olivo A; Mandel T; Metzger S; Vandenbussche M; Freitas L; Kuhlemeier C
    Nat Genet; 2016 Feb; 48(2):159-66. PubMed ID: 26656847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tempo and mode of flower color evolution.
    Smith SD; Goldberg EE
    Am J Bot; 2015 Jul; 102(7):1014-25. PubMed ID: 26199360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological changes besides the enhancement of pigmentation in Petunia hybrida caused by overexpression of PhAN2, an R2R3-MYB transcription factor.
    Li G; Serek M; Gehl C
    Plant Cell Rep; 2023 Mar; 42(3):609-627. PubMed ID: 36690873
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Two R2R3-MYB genes, homologs of Petunia AN2, regulate anthocyanin biosyntheses in flower Tepals, tepal spots and leaves of asiatic hybrid lily.
    Yamagishi M; Shimoyamada Y; Nakatsuka T; Masuda K
    Plant Cell Physiol; 2010 Mar; 51(3):463-74. PubMed ID: 20118109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tight genetic linkage of prezygotic barrier loci creates a multifunctional speciation island in Petunia.
    Hermann K; Klahre U; Moser M; Sheehan H; Mandel T; Kuhlemeier C
    Curr Biol; 2013 May; 23(10):873-7. PubMed ID: 23602480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Divergent selection drives genetic differentiation in an R2R3-MYB transcription factor that contributes to incipient speciation in Mimulus aurantiacus.
    Streisfeld MA; Young WN; Sobel JM
    PLoS Genet; 2013 Mar; 9(3):e1003385. PubMed ID: 23555295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speciation genes in the genus Petunia.
    Venail J; Dell'olivo A; Kuhlemeier C
    Philos Trans R Soc Lond B Biol Sci; 2010 Feb; 365(1539):461-8. PubMed ID: 20047872
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The genetics of reproductive organ morphology in two Petunia species with contrasting pollination syndromes.
    Hermann K; Klahre U; Venail J; Brandenburg A; Kuhlemeier C
    Planta; 2015 May; 241(5):1241-54. PubMed ID: 25656052
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection favors loss of floral pigmentation in a highly selfing morning glory.
    Duncan TM; Rausher MD
    PLoS One; 2020; 15(4):e0231263. PubMed ID: 32282839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.