BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 30472357)

  • 1. Neonatal septal lesions prevent behavioral defeminization caused by neonatal treatment with estradiol in female rats.
    Kanaya M; Tsukahara S; Yamanouchi K
    Neurosci Lett; 2019 Feb; 694():80-85. PubMed ID: 30472357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of neonatal treatment with phytoestrogens, genistein and daidzein, on sex difference in female rat brain function: estrous cycle and lordosis.
    Kouki T; Kishitake M; Okamoto M; Oosuka I; Takebe M; Yamanouchi K
    Horm Behav; 2003 Aug; 44(2):140-5. PubMed ID: 13129486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppressive effect of neonatal treatment with a phytoestrogen, coumestrol, on lordosis and estrous cycle in female rats.
    Kouki T; Okamoto M; Wada S; Kishitake M; Yamanouchi K
    Brain Res Bull; 2005 Jan; 64(5):449-54. PubMed ID: 15607833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estrogen and progesterone priming induces lordosis in female rats by reversing the inhibitory influence of the infralimbic cortex on neuronal activity of the lateral septal nucleus.
    Contreras CM; Gutiérrez-García AG
    Neurosci Lett; 2020 Jul; 732():135079. PubMed ID: 32454149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of gamma-aminobutyric acid on lordosis behavior and dopamine activity in estrogen primed spayed female rats.
    Mcginnis MY; Gordon JH; Gorski RA
    Brain Res; 1980 Feb; 184(1):179-97. PubMed ID: 7357416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of postnatal androgens in sexual differentiation of the lordosis-inhibiting effect of central injections of cholecystokinin.
    Ulibarri C; Popper P; Micevych PE
    J Neurobiol; 1990 Jul; 21(5):796-807. PubMed ID: 2394993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sex-dependent differences in estrogen regulation of choline acetyltransferase are altered by neonatal treatments.
    Luine VN; Renner KJ; McEwen BS
    Endocrinology; 1986 Aug; 119(2):874-8. PubMed ID: 3732148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurohistological and behavioral evidence for lordosis-inhibiting tract from lateral septum to periaqueductal gray in male rats.
    Tsukahara S; Yamanouchi K
    J Comp Neurol; 2001 Mar; 431(3):293-310. PubMed ID: 11170006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neonatal estrogen decreases neural density of the septum-midbrain central gray connection underlying the lordosis-inhibiting system in female rats.
    Tsukahara S; Ezawa N; Yamanouchi K
    Neuroendocrinology; 2003 Oct; 78(4):226-33. PubMed ID: 14583655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of direct application of estrogen aimed at lateral septum or dorsal raphe nucleus on lordosis behavior: regional and sexual differences in rats.
    Satou M; Yamanouchi K
    Neuroendocrinology; 1999 Jun; 69(6):446-52. PubMed ID: 10364697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examination of some factors that control the effects of septal lesions on lordosis behavior.
    Nance DM; Shryne JE; Gordon JH; Gorski RA
    Pharmacol Biochem Behav; 1977 Feb; 6(2):227-34. PubMed ID: 870908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two types of lordosis-inhibiting systems in male rats: dorsal raphe nucleus lesions and septal cuts.
    Kakeyama M; Yamanouchi K
    Physiol Behav; 1994 Jul; 56(1):189-92. PubMed ID: 8084900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estrogen receptor α and β are involved in the activation of lordosis behavior in estradiol-primed rats.
    Domínguez-Ordóñez R; García-Juárez M; Lima-Hernández FJ; Gómora-Arrati P; Blaustein JD; Etgen AM; González-Flores O
    Horm Behav; 2016 Nov; 86():1-7. PubMed ID: 27594441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adult partner preference and sexual behavior of male rats affected by perinatal endocrine manipulations.
    Brand T; Kroonen J; Mos J; Slob AK
    Horm Behav; 1991 Sep; 25(3):323-41. PubMed ID: 1937426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of septal lesion on lordosis response induced by estradiol in middle-aged and old female rats.
    Lee LR; Yu JY; Peng MT
    Neurobiol Aging; 1985; 6(3):241-4. PubMed ID: 4058652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of unilateral frontolateral hypothalamic knife cuts and asymmetrical unilateral septal lesions on lordosis behavior of rats.
    King TR; Nance DM
    Physiol Behav; 1985 Dec; 35(6):955-9. PubMed ID: 4095188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of lordotic activity by dorsal deafferentation of the preoptic area in male and androgenized female rats.
    Kondo Y; Shinoda A; Yamanouchi K; Arai Y
    Physiol Behav; 1986; 37(3):495-8. PubMed ID: 3749307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A regional analysis of estrogen binding to hypothalamic cell nuclei in relation to masculinization and defeminization.
    Nordeen EJ; Yahr P
    J Neurosci; 1983 May; 3(5):933-41. PubMed ID: 6842286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations by estrogen and hypothyroidism in the effects of septal lesions on lordosis behavior of male rats.
    Nance DM; Phelps C; Shryne JE; Gorski RA
    Brain Res Bull; 1977; 2(1):49-53. PubMed ID: 861771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lordosis-inhibiting effect of progesterone in female rats with lesions in septum, preoptic area, or dorsal raphe nucleus.
    Satou M; Yamanouchi K
    Physiol Behav; 1996 Sep; 60(3):1027-31. PubMed ID: 8873287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.