These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 30472357)

  • 1. Neonatal septal lesions prevent behavioral defeminization caused by neonatal treatment with estradiol in female rats.
    Kanaya M; Tsukahara S; Yamanouchi K
    Neurosci Lett; 2019 Feb; 694():80-85. PubMed ID: 30472357
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of neonatal treatment with phytoestrogens, genistein and daidzein, on sex difference in female rat brain function: estrous cycle and lordosis.
    Kouki T; Kishitake M; Okamoto M; Oosuka I; Takebe M; Yamanouchi K
    Horm Behav; 2003 Aug; 44(2):140-5. PubMed ID: 13129486
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppressive effect of neonatal treatment with a phytoestrogen, coumestrol, on lordosis and estrous cycle in female rats.
    Kouki T; Okamoto M; Wada S; Kishitake M; Yamanouchi K
    Brain Res Bull; 2005 Jan; 64(5):449-54. PubMed ID: 15607833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Estrogen and progesterone priming induces lordosis in female rats by reversing the inhibitory influence of the infralimbic cortex on neuronal activity of the lateral septal nucleus.
    Contreras CM; Gutiérrez-García AG
    Neurosci Lett; 2020 Jul; 732():135079. PubMed ID: 32454149
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of gamma-aminobutyric acid on lordosis behavior and dopamine activity in estrogen primed spayed female rats.
    Mcginnis MY; Gordon JH; Gorski RA
    Brain Res; 1980 Feb; 184(1):179-97. PubMed ID: 7357416
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of postnatal androgens in sexual differentiation of the lordosis-inhibiting effect of central injections of cholecystokinin.
    Ulibarri C; Popper P; Micevych PE
    J Neurobiol; 1990 Jul; 21(5):796-807. PubMed ID: 2394993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sex-dependent differences in estrogen regulation of choline acetyltransferase are altered by neonatal treatments.
    Luine VN; Renner KJ; McEwen BS
    Endocrinology; 1986 Aug; 119(2):874-8. PubMed ID: 3732148
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neurohistological and behavioral evidence for lordosis-inhibiting tract from lateral septum to periaqueductal gray in male rats.
    Tsukahara S; Yamanouchi K
    J Comp Neurol; 2001 Mar; 431(3):293-310. PubMed ID: 11170006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neonatal estrogen decreases neural density of the septum-midbrain central gray connection underlying the lordosis-inhibiting system in female rats.
    Tsukahara S; Ezawa N; Yamanouchi K
    Neuroendocrinology; 2003 Oct; 78(4):226-33. PubMed ID: 14583655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of direct application of estrogen aimed at lateral septum or dorsal raphe nucleus on lordosis behavior: regional and sexual differences in rats.
    Satou M; Yamanouchi K
    Neuroendocrinology; 1999 Jun; 69(6):446-52. PubMed ID: 10364697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examination of some factors that control the effects of septal lesions on lordosis behavior.
    Nance DM; Shryne JE; Gordon JH; Gorski RA
    Pharmacol Biochem Behav; 1977 Feb; 6(2):227-34. PubMed ID: 870908
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two types of lordosis-inhibiting systems in male rats: dorsal raphe nucleus lesions and septal cuts.
    Kakeyama M; Yamanouchi K
    Physiol Behav; 1994 Jul; 56(1):189-92. PubMed ID: 8084900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estrogen receptor α and β are involved in the activation of lordosis behavior in estradiol-primed rats.
    Domínguez-Ordóñez R; García-Juárez M; Lima-Hernández FJ; Gómora-Arrati P; Blaustein JD; Etgen AM; González-Flores O
    Horm Behav; 2016 Nov; 86():1-7. PubMed ID: 27594441
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adult partner preference and sexual behavior of male rats affected by perinatal endocrine manipulations.
    Brand T; Kroonen J; Mos J; Slob AK
    Horm Behav; 1991 Sep; 25(3):323-41. PubMed ID: 1937426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of septal lesion on lordosis response induced by estradiol in middle-aged and old female rats.
    Lee LR; Yu JY; Peng MT
    Neurobiol Aging; 1985; 6(3):241-4. PubMed ID: 4058652
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of unilateral frontolateral hypothalamic knife cuts and asymmetrical unilateral septal lesions on lordosis behavior of rats.
    King TR; Nance DM
    Physiol Behav; 1985 Dec; 35(6):955-9. PubMed ID: 4095188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of lordotic activity by dorsal deafferentation of the preoptic area in male and androgenized female rats.
    Kondo Y; Shinoda A; Yamanouchi K; Arai Y
    Physiol Behav; 1986; 37(3):495-8. PubMed ID: 3749307
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A regional analysis of estrogen binding to hypothalamic cell nuclei in relation to masculinization and defeminization.
    Nordeen EJ; Yahr P
    J Neurosci; 1983 May; 3(5):933-41. PubMed ID: 6842286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alterations by estrogen and hypothyroidism in the effects of septal lesions on lordosis behavior of male rats.
    Nance DM; Phelps C; Shryne JE; Gorski RA
    Brain Res Bull; 1977; 2(1):49-53. PubMed ID: 861771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lordosis-inhibiting effect of progesterone in female rats with lesions in septum, preoptic area, or dorsal raphe nucleus.
    Satou M; Yamanouchi K
    Physiol Behav; 1996 Sep; 60(3):1027-31. PubMed ID: 8873287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.