These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 30472445)
21. Development of a rapid and sensitive immunosensor for the detection of bacteria. Verdoodt N; Basso CR; Rossi BF; Pedrosa VA Food Chem; 2017 Apr; 221():1792-1796. PubMed ID: 27979163 [TBL] [Abstract][Full Text] [Related]
22. Construction of smartphone-adapted signal visualization platform for dual-mode detection of H Meng X; Wang J; Yang Z; Liu Z; Zhang Z; He S; Li C Talanta; 2024 Apr; 270():125517. PubMed ID: 38091744 [TBL] [Abstract][Full Text] [Related]
23. A microfluidic colorimetric biosensor for rapid detection of Escherichia coli O157:H7 using gold nanoparticle aggregation and smart phone imaging. Zheng L; Cai G; Wang S; Liao M; Li Y; Lin J Biosens Bioelectron; 2019 Jan; 124-125():143-149. PubMed ID: 30366259 [TBL] [Abstract][Full Text] [Related]
24. DNA biosensor combining single-wavelength colorimetry and a digital lock-in amplifier within a smartphone. Wu TH; Chang CC; Vaillant J; Bruyant A; Lin CW Lab Chip; 2016 Nov; 16(23):4527-4533. PubMed ID: 27778010 [TBL] [Abstract][Full Text] [Related]
25. Arginine-assisted immobilization of silver nanoparticles on ZnO nanorods: an enhanced and reusable antibacterial substrate without human cell cytotoxicity. Agnihotri S; Bajaj G; Mukherji S; Mukherji S Nanoscale; 2015 Apr; 7(16):7415-29. PubMed ID: 25830178 [TBL] [Abstract][Full Text] [Related]
26. A sensitive gold nanoparticle-based colorimetric aptasensor for Staphylococcus aureus. Yuan J; Wu S; Duan N; Ma X; Xia Y; Chen J; Ding Z; Wang Z Talanta; 2014 Sep; 127():163-8. PubMed ID: 24913871 [TBL] [Abstract][Full Text] [Related]
27. Highly sensitive on-site detection of glucose in human urine with naked eye based on enzymatic-like reaction mediated etching of gold nanorods. Zhang Z; Chen Z; Cheng F; Zhang Y; Chen L Biosens Bioelectron; 2017 Mar; 89(Pt 2):932-936. PubMed ID: 27816591 [TBL] [Abstract][Full Text] [Related]
28. Smartphone colorimetric assay of acid phosphatase based on a controlled iodine-mediated etching of gold nanorods. Liu BW; Huang PC; Wu FY Anal Bioanal Chem; 2020 Nov; 412(29):8051-8059. PubMed ID: 33001243 [TBL] [Abstract][Full Text] [Related]
29. Biosensors based on modularly designed synthetic peptides for recognition, detection and live/dead differentiation of pathogenic bacteria. Liu X; Marrakchi M; Xu D; Dong H; Andreescu S Biosens Bioelectron; 2016 Jun; 80():9-16. PubMed ID: 26802747 [TBL] [Abstract][Full Text] [Related]
30. An efficient antimicrobial depot for infectious site-targeted chemo-photothermal therapy. Liu M; He D; Yang T; Liu W; Mao L; Zhu Y; Wu J; Luo G; Deng J J Nanobiotechnology; 2018 Mar; 16(1):23. PubMed ID: 29548342 [TBL] [Abstract][Full Text] [Related]
31. Colorimetric detection of endogenous hydrogen sulfide production in living cells. Ahn YJ; Lee YJ; Lee J; Lee D; Park HK; Lee GJ Spectrochim Acta A Mol Biomol Spectrosc; 2017 Apr; 177():118-124. PubMed ID: 28135697 [TBL] [Abstract][Full Text] [Related]
32. Colorimetric sensor array with unmodified noble metal nanoparticles for naked-eye detection of proteins and bacteria. Li D; Dong Y; Li B; Wu Y; Wang K; Zhang S Analyst; 2015 Nov; 140(22):7672-7. PubMed ID: 26446513 [TBL] [Abstract][Full Text] [Related]
33. Electroactive Au@Ag nanoparticles driven electrochemical sensor for endogenous H Zhao Y; Yang Y; Cui L; Zheng F; Song Q Biosens Bioelectron; 2018 Oct; 117():53-59. PubMed ID: 29885580 [TBL] [Abstract][Full Text] [Related]
34. Label-free NIR-SERS discrimination and detection of foodborne bacteria by in situ synthesis of Ag colloids. Chen L; Mungroo N; Daikuara L; Neethirajan S J Nanobiotechnology; 2015 Jun; 13():45. PubMed ID: 26108554 [TBL] [Abstract][Full Text] [Related]
35. Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS. Yilmaz M; Senlik E; Biskin E; Yavuz MS; Tamer U; Demirel G Phys Chem Chem Phys; 2014 Mar; 16(12):5563-70. PubMed ID: 24514029 [TBL] [Abstract][Full Text] [Related]
36. Interactions between bacterial surface and nanoparticles govern the performance of "chemical nose" biosensors. Verma MS; Wei SC; Rogowski JL; Tsuji JM; Chen PZ; Lin CW; Jones L; Gu FX Biosens Bioelectron; 2016 Sep; 83():115-25. PubMed ID: 27108254 [TBL] [Abstract][Full Text] [Related]
37. Smartphone-based, sensitive µPAD detection of urinary tract infection and gonorrhea. Cho S; Park TS; Nahapetian TG; Yoon JY Biosens Bioelectron; 2015 Dec; 74():601-11. PubMed ID: 26190472 [TBL] [Abstract][Full Text] [Related]
38. Rapid and low-cost biosensor for the detection of Staphylococcus aureus. Suaifan GA; Alhogail S; Zourob M Biosens Bioelectron; 2017 Apr; 90():230-237. PubMed ID: 27914366 [TBL] [Abstract][Full Text] [Related]
39. A portable/miniaturized analytical kit for on-site analysis: Chemical vapor generation-visual colorimetric and smartphone RGB dual-mode for detection of sulfide ion in water and food additives. Jiang C; Chen J; Tang J; Xiao J; Xu F; Luo H; Huang K; Zou Z Food Chem; 2024 Jun; 444():138532. PubMed ID: 38330600 [TBL] [Abstract][Full Text] [Related]
40. Large protein analysis of Staphylococcus aureus and Escherichia coli by MALDI TOF mass spectrometry using amoxicillin functionalized magnetic nanoparticles. Hasan N; Guo Z; Wu HF Anal Bioanal Chem; 2016 Sep; 408(23):6269-81. PubMed ID: 27565791 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]